List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6624402/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Porcine reproductive and respiratory syndrome in China. Virus Research, 2010, 154, 31-37.	1.1	249
2	The 30-Amino-Acid Deletion in the Nsp2 of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Emerging in China Is Not Related to Its Virulence. Journal of Virology, 2009, 83, 5156-5167.	1.5	238
3	NADC30-like Strain of Porcine Reproductive and Respiratory Syndrome Virus, China. Emerging Infectious Diseases, 2015, 21, 2256-2257.	2.0	171
4	Nsp9 and Nsp10 Contribute to the Fatal Virulence of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Emerging in China. PLoS Pathogens, 2014, 10, e1004216.	2.1	136
5	Pathogenesis and control of the Chinese highly pathogenic porcine reproductive and respiratory syndrome virus. Veterinary Microbiology, 2017, 209, 30-47.	0.8	116
6	Molecular variation analysis of porcine reproductive and respiratory syndrome virus in China. Virus Research, 2009, 145, 97-105.	1.1	97
7	A recombinant type 2 porcine reproductive and respiratory syndrome virus between NADC30-like and a MLV-like: Genetic characterization and pathogenicity for piglets. Infection, Genetics and Evolution, 2017, 54, 279-286.	1.0	67
8	Efficacy evaluation of three modified-live virus vaccines against a strain of porcine reproductive and respiratory syndrome virus NADC30-like. Veterinary Microbiology, 2017, 207, 108-116.	0.8	67
9	The Natural Compound Homoharringtonine Presents Broad Antiviral Activity In Vitro and In Vivo. Viruses, 2018, 10, 601.	1.5	64
10	Phylogenetic analysis of porcine epidemic diarrhea virus field strains prevailing recently in China. Archives of Virology, 2013, 158, 711-715.	0.9	60
11	Computer-aided codon-pairs deoptimization of the major envelope GP5 gene attenuates porcine reproductive and respiratory syndrome virus. Virology, 2014, 450-451, 132-139.	1.1	60
12	The DEAD-box RNA helicase 5 positively regulates the replication of porcine reproductive and respiratory syndrome virus by interacting with viral Nsp9 in vitro. Virus Research, 2015, 195, 217-224.	1.1	51
13	Porcine Reproductive and Respiratory Syndrome Modified Live Virus Vaccine: A "Leaky―Vaccine with Debatable Efficacy and Safety. Vaccines, 2021, 9, 362.	2.1	47
14	Genetic Diversity Analysis of Genotype 2 Porcine Reproductive and Respiratory Syndrome Viruses Emerging in Recent Years in China. BioMed Research International, 2014, 2014, 1-13.	0.9	46
15	DNA shuffling of the GP3 genes of porcine reproductive and respiratory syndrome virus (PRRSV) produces a chimeric virus with an improved cross-neutralizing ability against a heterologous PRRSV strain. Virology, 2012, 434, 96-109.	1.1	45
16	Targeting Swine Leukocyte Antigen Class I Molecules for Proteasomal Degradation by the nsp1α Replicase Protein of the Chinese Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Strain JXwn06. Journal of Virology, 2016, 90, 682-693.	1.5	41
17	Porcine epidemic diarrhea virus S1 protein is the critical inducer of apoptosis. Virology Journal, 2018, 15, 170.	1.4	35
18	The S Gene Is Necessary but Not Sufficient for the Virulence of Porcine Epidemic Diarrhea Virus Novel Variant Strain BJ2011C. Journal of Virology, 2018, 92, .	1.5	33

#	Article	IF	CITATIONS
19	Porcine reproductive and respiratory syndrome virus counteracts the porcine intrinsic virus restriction factors—IFITM1 and Tetherin in MARC-145 cells. Virus Research, 2014, 191, 92-100.	1.1	32
20	Genomic organization and molecular characterization of porcine cytomegalovirus. Virology, 2014, 460-461, 165-172.	1.1	32
21	Induction of Apoptosis by the Nonstructural Protein 4 and 10 of Porcine Reproductive and Respiratory Syndrome Virus. PLoS ONE, 2016, 11, e0156518.	1.1	32
22	The interaction of nonstructural protein 9 with retinoblastoma protein benefits the replication of genotype 2 porcine reproductive and respiratory syndrome virus in vitro. Virology, 2014, 464-465, 432-440.	1.1	31
23	Genomic characterization and pathogenicity of a strain of type 1 porcine reproductive and respiratory syndrome virus. Virus Research, 2016, 225, 40-49.	1.1	31
24	The nsp2 Hypervariable Region of Porcine Reproductive and Respiratory Syndrome Virus Strain JXwn06 Is Associated with Viral Cellular Tropism to Primary Porcine Alveolar Macrophages. Journal of Virology, 2019, 93, .	1.5	30
25	Both Nsp1l̂² and Nsp11 are responsible for differential TNF-l̂± production induced by porcine reproductive and respiratory syndrome virus strains with different pathogenicity in vitro. Virus Research, 2015, 201, 32-40.	1.1	28
26	Mapping the Nonstructural Protein Interaction Network of Porcine Reproductive and Respiratory Syndrome Virus. Journal of Virology, 2018, 92, .	1.5	28
27	Fine mapping of the awn gene on chromosome 4 in rice by association and linkage analyses. Science Bulletin, 2011, 56, 835-839.	1.7	26
28	The amino acid at residue 155 in nonstructural protein 4 of porcine reproductive and respiratory syndrome virus contributes to its inhibitory effect for interferon-β transcription in vitro. Virus Research, 2014, 189, 226-234.	1.1	26
29	Development of a fluorescent probeâ€based realâ€time reverse transcription recombinaseâ€aided amplification assay for the rapid detection of classical swine fever virus. Transboundary and Emerging Diseases, 2021, 68, 2017-2027.	1.3	26
30	Broadening the Heterologous Cross-Neutralizing Antibody Inducing Ability of Porcine Reproductive and Respiratory Syndrome Virus by Breeding the GP4 or M genes. PLoS ONE, 2013, 8, e66645.	1.1	24
31	Cellular DEAD-box RNA helicase 18 (DDX18) Promotes the PRRSV Replication via Interaction with Virus nsp2 and nsp10. Virus Research, 2017, 238, 204-212.	1.1	24
32	Nonstructural protein 9 residues 586 and 592 are critical sites in determining the replication efficiency and fatal virulence of the Chinese highly pathogenic porcine reproductive and respiratory syndrome virus. Virology, 2018, 517, 135-147.	1.1	24
33	Evolutionary analysis of six isolates of porcine reproductive and respiratory syndrome virus from a single pig farm: MLV-evolved and recombinant viruses. Infection, Genetics and Evolution, 2018, 66, 111-119.	1.0	24
34	Transcriptome Analysis Reveals Dynamic Gene Expression Profiles in Porcine Alveolar Macrophages in Response to the Chinese Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus. BioMed Research International, 2018, 2018, 1-23.	0.9	24
35	Glycoproteins C and D of PRV Strain HB1201 Contribute Individually to the Escape From Bartha-K61 Vaccine-Induced Immunity. Frontiers in Microbiology, 2020, 11, 323.	1.5	24
36	Efficacy evaluation of two commercial modified-live virus vaccines against a novel recombinant type 2 porcine reproductive and respiratory syndrome virus. Veterinary Microbiology, 2018, 216, 176-182.	0.8	23

#	Article	IF	CITATIONS
37	High reversion potential of a cell-adapted vaccine candidate against highly pathogenic porcine reproductive and respiratory syndrome. Veterinary Microbiology, 2018, 227, 133-142.	0.8	23
38	Porcine reproductive and respiratory syndrome virus nsp1î² and nsp11 antagonize the antiviral activity of cholesterol-25-hydroxylase via lysosomal degradation. Veterinary Microbiology, 2018, 223, 134-143.	0.8	23
39	Nsp2 and GP5-M of Porcine Reproductive and Respiratory Syndrome Virus Contribute to Targets for Neutralizing Antibodies. Virologica Sinica, 2019, 34, 631-640.	1.2	22
40	Comparison of commercial enzyme-linked immunosorbent assays and fluorescent microbead immunoassays for detection of antibodies against porcine reproductive and respiratory syndrome virus in boars. Journal of Virological Methods, 2014, 197, 63-66.	1.0	19
41	Development of the full-length cDNA clones of two porcine epidemic diarrhea disease virus isolates with different virulence. PLoS ONE, 2017, 12, e0173998.	1.1	19
42	Chimeric porcine reproductive and respiratory syndrome virus containing shuffled multiple envelope genes confers cross-protection in pigs. Virology, 2015, 485, 402-413.	1.1	18
43	TNF-α induced by porcine reproductive and respiratory syndrome virus inhibits the replication of classical swine fever virus C-strain. Veterinary Microbiology, 2019, 234, 25-33.	0.8	17
44	A strain of porcine deltacoronavirus: Genomic characterization, pathogenicity and its fullâ€length cDNA infectious clone. Transboundary and Emerging Diseases, 2021, 68, 2130-2146.	1.3	17
45	Interactome Profile of the Host Cellular Proteins and the Nonstructural Protein 2 of Porcine Reproductive and Respiratory Syndrome Virus. PLoS ONE, 2014, 9, e99176.	1.1	16
46	Quantitative Proteomic Analysis of Porcine Intestinal Epithelial Cells Infected with Porcine Deltacoronavirus Using iTRAQ-Coupled LC-MS/MS. Journal of Proteome Research, 2020, 19, 4470-4485.	1.8	16
47	Highly Pathogenic PRRSV-Infected Alveolar Macrophages Impair the Function of Pulmonary Microvascular Endothelial Cells. Viruses, 2022, 14, 452.	1.5	16
48	Capsid, membrane and NS3 are the major viral proteins involved in autophagy induced by Japanese encephalitis virus. Veterinary Microbiology, 2015, 178, 217-229.	0.8	15
49	Antiviral Effect of 25-Hydroxycholesterol against Porcine Reproductive and Respiratory Syndrome virus <i>in vitro</i> . Antiviral Therapy, 2018, 23, 395-404.	0.6	15
50	Comparative Analysis of the Gut Microbial Communities of the Eurasian Kestrel (Falco tinnunculus) at Different Developmental Stages. Frontiers in Microbiology, 2020, 11, 592539.	1.5	15
51	Interaction of porcine reproductive and respiratory syndrome virus proteins with SUMO-conjugating enzyme reveals the SUMOylation of nucleocapsid protein. PLoS ONE, 2017, 12, e0189191.	1.1	13
52	Interleukin-2 enhancer binding factor 2 interacts with the nsp9 or nsp2 of porcine reproductive and respiratory syndrome virus and exerts negatively regulatory effect on the viral replication. Virology Journal, 2017, 14, 125.	1.4	13
53	Pseudorabies virus infection inhibits stress granules formation via dephosphorylating eIF2α. Veterinary Microbiology, 2020, 247, 108786.	0.8	13
54	The pUL56 of pseudorabies virus variant induces downregulation of swine leukocyte antigen class I molecules through the lysosome pathway. Virus Research, 2018, 251, 56-67.	1.1	12

#	Article	IF	CITATIONS
55	Detection of pseudorabies virus with a realâ€ŧime recombinaseâ€∎ided amplification assay. Transboundary and Emerging Diseases, 2022, 69, 2266-2274.	1.3	12
56	Viral evasion of PKR restriction by reprogramming cellular stress granules. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	11
57	Epitope mapping and characterization of a novel Nsp10-specific monoclonal antibody that differentiates genotype 2 PRRSV from genotype 1 PRRSV. Virology Journal, 2017, 14, 116.	1.4	10
58	The Chinese highly pathogenic porcine reproductive and respiratory syndrome virus infection suppresses Th17 cells response in vivo. Veterinary Microbiology, 2016, 189, 75-85.	0.8	9
59	Application of RNAscope technology to studying the infection dynamics of a Chinese porcine epidemic diarrhea virus variant strain BJ2011C in neonatal piglets. Veterinary Microbiology, 2019, 235, 220-228.	0.8	9
60	Developing a Triple Transgenic Cell Line for High-Efficiency Porcine Reproductive and Respiratory Syndrome Virus Infection. PLoS ONE, 2016, 11, e0154238.	1.1	9
61	Complete Genome Sequence of Porcine Epidemic Diarrhea Virus from an Outbreak in a Vaccinated Farm in Shandong, China. Genome Announcements, 2016, 4, .	0.8	8
62	Identification of a novel linear B-cell epitope in nonstructural protein 11 of porcine reproductive and respiratory syndrome virus that are conserved in both genotypes. PLoS ONE, 2017, 12, e0188946.	1.1	8
63	Characterizing the PRRSV nsp2 Deubiquitinase Reveals Dispensability of Cis-Activity for Replication and a Link of nsp2 to Inflammation Induction. Viruses, 2019, 11, 896.	1.5	8
64	IL-11² induced by PRRSV co-infection inhibited CSFV C-strain proliferation via the TLR4/NF-κB/MAPK pathways and the NLRP3 inflammasome. Veterinary Microbiology, 2022, 273, 109513.	0.8	8
65	Identification of Nonstructural Protein 8 as the N-Terminus of the RNA-Dependent RNA Polymerase of Porcine Reproductive and Respiratory Syndrome Virus. Virologica Sinica, 2018, 33, 429-439.	1.2	7
66	Identification of an Intramolecular Switch That Controls the Interaction of Helicase nsp10 with Membrane-Associated nsp12 of Porcine Reproductive and Respiratory Syndrome Virus. Journal of Virology, 2021, 95, e0051821.	1.5	7
67	Development of a VP2â€based realâ€time fluorescent reverse transcription recombinaseâ€aided amplification assay to rapidly detect Senecavirus A. Transboundary and Emerging Diseases, 2022, 69, 2828-2839.	1.3	7
68	The gut microbiota of bats confers tolerance to influenza virus (H1N1) infection in mice. Transboundary and Emerging Diseases, 2022, 69, .	1.3	7
69	Critical role of cytochrome c1 and its cleavage in porcine reproductive and respiratory syndrome virus nonstructural protein 4-induced cell apoptosis via interaction with nsp4. Journal of Integrative Agriculture, 2017, 16, 2573-2585.	1.7	6
70	Construction of a Porcine Reproductive and Respiratory Syndrome Virus with Nanoluc Luciferase Reporter: a Stable and Highly Efficient Tool for Viral Quantification Both <i>In Vitro</i> and <i>In Vivo</i> . Microbiology Spectrum, 2022, 10.	1.2	6
71	Porcine reproductive and respiratory syndrome virus suppresses post-transcriptionally the protein expression of IFN-Î ² by upregulating cellular microRNAs in porcine alveolar macrophages in vitro. Experimental and Therapeutic Medicine, <u>2018</u> , <u>15</u> , <u>115-126</u> .	0.8	5
72	Induction of Rod-Shaped Structures by Herpes Simplex Virus Glycoprotein I. Journal of Virology, 2020, 94, .	1.5	5

#	Article	IF	CITATIONS
73	Attenuation of porcine deltacoronavirus disease severity by porcine reproductive and respiratory syndrome virus coinfection in a weaning pig model. Virulence, 2021, 12, 1011-1021.	1.8	5
74	PRRSV Promotes MARC-145 Cells Entry Into S Phase of the Cell Cycle to Facilitate Viral Replication via Degradation of p21 by nsp11. Frontiers in Veterinary Science, 2021, 8, 642095.	0.9	5
75	Comparative Proteomic Analysis Reveals Mx1 Inhibits Senecavirus A Replication in PK-15 Cells by Interacting with the Capsid Proteins VP1, VP2 and VP3. Viruses, 2022, 14, 863.	1.5	4
76	Prevalence and Evolution Analysis of Porcine Circovirus 3 in China from 2018 to 2022. Animals, 2022, 12, 1588.	1.0	4
77	Identification of the strain-specifically truncated nonstructural protein 10 of porcine reproductive and respiratory syndrome virus in infected cells. Journal of Integrative Agriculture, 2018, 17, 1171-1180.	1.7	3
78	Evolutionary Patterns of Codon Usage in Major Lineages of Porcine Reproductive and Respiratory Syndrome Virus in China. Viruses, 2021, 13, 1044.	1.5	3
79	Proteomic Analysis of Vero Cells Infected with Pseudorabies Virus. Viruses, 2022, 14, 755.	1.5	2
80	Over-expression of CD163, CD169, and CD151 is not sufficient to improve the susceptibility to porcine reproductive and respiratory syndrome virus infection in transgenic mice. Science Bulletin, 2017, 62, 1634-1636.	4.3	1
81	Identification of three site mutations in nonstructural protein 1β, glycoprotein 3 and glycoprotein 5 that correlate with increased interferon α resistance of porcine reproductive and respiratory syndrome virus. Veterinary Microbiology, 2019, 236, 108395.	0.8	1
82	Mapping the Key Residues within the Porcine Reproductive and Respiratory Syndrome Virus nsp1α Replicase Protein Required for Degradation of Swine Leukocyte Antigen Class I Molecules. Viruses, 2022, 14, 690.	1.5	0