
Jiang Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6623931/publications.pdf Version: 2024-02-01

Цамс Ми

#	Article	IF	CITATIONS
1	Gaseous mercury capture using iodine-modified carbon nitride derived from guanidine hydrochloride. Chemical Physics Letters, 2022, 793, 139171.	2.6	8
2	Spherical In2S3 anchored on g-C3N4 nanosheets for efficient elemental mercury removal in the wide temperature range. Chemical Engineering Journal, 2022, 430, 132857.	12.7	25
3	Coordinative sulfur site over flower-structured MoS2 for efficient elemental mercury uptake from coal-fired flue gas. Chemical Engineering Journal, 2022, 434, 134649.	12.7	10
4	Salt-Assisted Synthesis of Rod-Like Bi ₂ S ₃ Single Crystals for Gas-Phase Elemental Mercury Removal. Energy & Fuels, 2022, 36, 2591-2599.	5.1	15
5	Gaseous Elemental Mercury Capture by Magnetic FeS ₂ Nanorods Synthesized via a Molten Salt Method. ACS Applied Nano Materials, 2022, 5, 2626-2635.	5.0	14
6	ZnS-modified carbon nitride nanosheet with enhanced performance of elemental Hg removal: An experimental and density functional theory study. Korean Journal of Chemical Engineering, 2022, 39, 1641-1650.	2.7	8
7	CuS-Doped Ti ₃ C ₂ MXene Nanosheets for Highly Efficient Adsorption of Elemental Mercury in Flue Gas. Energy & Fuels, 2022, 36, 2503-2514.	5.1	13
8	Graphitic Carbon Nitride for Gaseous Mercury Emission Control: A Review. Energy & Fuels, 2022, 36, 4297-4313.	5.1	15
9	Molten salt synthesis of WS2 and MoS2 nanosheets toward efficient gaseous elemental mercury capture. Science of the Total Environment, 2022, 824, 153934.	8.0	19
10	Molten salt shielded preparation of rice straw biochars doped by copper sulfide for elemental mercury capture. Journal of the Energy Institute, 2022, 102, 176-183.	5.3	12
11	Flue gas mercury removal using WS2-doped carbon nitride via physical mixing. Chemical Physics, 2022, 562, 111643.	1.9	4
12	Magnetically recyclable CoS-modified graphitic carbon nitride-based materials for efficient immobilization of gaseous elemental mercury. Fuel, 2022, 326, 125117.	6.4	43
13	Tuning sulfur vacancies in CoS2 via a molten salt approach for promoted mercury vapor adsorption. Chemical Engineering Journal, 2022, 450, 137956.	12.7	7
14	Elemental mercury captureÂfrom industrial gas emissions using sulfides and selenides: a review. Environmental Chemistry Letters, 2021, 19, 1395-1411.	16.2	26
15	Surface defect engineering of Fe-doped Bi7O9I3 microflowers for ameliorating charge-carrier separation and molecular oxygen activation. Applied Catalysis B: Environmental, 2021, 284, 119727.	20.2	104
16	Defective molybdenum disulfide nanosheet for elemental mercury capture in simulated flue gas. Journal of the Energy Institute, 2021, 94, 120-128.	5.3	44
17	Copper Sulfide-Loaded Boron Nitride Nanosheets for Elemental Mercury Removal from Simulated Flue Gas. Energy & Fuels, 2021, 35, 2234-2242.	5.1	19
18	Insights into the Mechanism of Elemental Mercury Adsorption on Graphitic Carbon Nitride: A Density Functional Theory Study. Energy & Fuels, 2021, 35, 9322-9331.	5.1	21

Jiang Wu

#	Article	IF	CITATIONS
19	Elemental mercury capture by graphene-analogous carbon nitride anchored with copper sulfide. Chemical Engineering Journal, 2021, 417, 127931.	12.7	14
20	Rod-Shaped Bi ₂ S ₃ Supported on Flaky Carbon Nitride for Effective Removal of Elemental Mercury in Flue Gas. Energy & Fuels, 2021, 35, 14634-14646.	5.1	6
21	Spherical-shaped CuS modified carbon nitride nanosheet for efficient capture of elemental mercury from flue gas at low temperature. Journal of Hazardous Materials, 2021, 415, 125692.	12.4	64
22	Nanosized ZnIn2S4 supported on facet-engineered CeO2 nanorods for efficient gaseous elemental mercury immobilization. Journal of Hazardous Materials, 2021, 419, 126436.	12.4	49
23	Constructing 3D Bi/Bi4O5I2 microspheres with rich oxygen vacancies by one-pot solvothermal method for enhancing photocatalytic activity on mercury removal. Chemical Engineering Journal, 2021, 425, 131599.	12.7	93
24	Bimetallic sulfides ZnIn2S4 modified g-C3N4 adsorbent with wide temperature range for rapid elemental mercury uptake from coal-fired flue gas. Chemical Engineering Journal, 2021, 426, 131343.	12.7	51
25	Gaseous mercury removal using biogenic porous silica modified with potassium bromide. Journal of the Energy Institute, 2021, 99, 161-169.	5.3	12
26	BiOIO3/graphene interfacial heterojunction for enhancing gaseous heavy metal removal. Materials Research Bulletin, 2020, 122, 110620.	5.2	29
27	Sorbents for hydrogen sulfide capture from biogas at low temperature: a review. Environmental Chemistry Letters, 2020, 18, 113-128.	16.2	49
28	Photocatalytic oxidation removal of elemental mercury from flue gas.ÂA review. Environmental Chemistry Letters, 2020, 18, 417-431.	16.2	40
29	Novel carbon-based sorbents for elemental mercury removal from gas streams: A review. Chemical Engineering Journal, 2020, 391, 123514.	12.7	112
30	Gaseous mercury removal by graphene-like carbon nitride impregnated with ammonium bromide. Fuel, 2020, 280, 118635.	6.4	41
31	TEXTURE AND STRUCTURE VARIATION OF PEROVSKITE LaFeO3/ZSM-5 DURING HIGH-TEMPERATURE DESULFURIZATION. Surface Review and Letters, 2020, 27, 1950151.	1.1	6
32	Elemental Mercury Capture from Simulated Flue Gas by Graphite-Phase Carbon Nitride. Energy & Fuels, 2020, 34, 6851-6861.	5.1	51
33	HONEYCOMB-LIKE MESOPOROUS g-C ₃ N ₄ FOR ELEMENTAL MERCURY REMOVAL FROM SIMULATED FLUE GAS. Surface Review and Letters, 2020, 27, 2050017.	1.1	8
34	Copper sulfide microsphere for Hg0 capture from flue gas at low temperature. Materials Today Communications, 2020, 25, 101188.	1.9	20
35	Removal of elemental mercury from simulated flue gas by ZSM-5 modified with Mn-Fe mixed oxides. Chemical Engineering Journal, 2019, 375, 121946.	12.7	104
36	Co3O4/g-C3N4 Hybrids for Gas-Phase Hg0 Removal at Low Temperature. Processes, 2019, 7, 279.	2.8	38

Jiang Wu

#	Article	IF	CITATIONS
37	Elemental Mercury Removal by MnO ₂ Nanoparticle-Decorated Carbon Nitride Nanosheet. Energy & Fuels, 2019, 33, 3089-3097.	5.1	50
38	A review of sorbents for high-temperature hydrogen sulfide removal from hot coal gas. Environmental Chemistry Letters, 2019, 17, 259-276.	16.2	53
39	KINETIC BEHAVIOR OF ELEMENTAL MERCURY SORPTION ON CERIUM- AND LANTHANUM-BASED COMPOSITE OXIDES. Surface Review and Letters, 2019, 26, 1850141.	1.1	7
40	Fractal characterization of graphene oxide nanosheet. Materials Letters, 2018, 220, 40-43.	2.6	15
41	Rare-Earth Oxide Desulfurizers. Energy and Environment Research in China, 2018, , 55-95.	1.1	0
42	Nano Elemental Metal Desulfurizers. Energy and Environment Research in China, 2018, , 97-120.	1.1	0
43	CuO/g-C3N4 nanocomposite for elemental mercury capture at low temperature. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	33
44	Graphitic carbon nitride for elemental mercury capture. Materials Letters, 2018, 227, 308-310.	2.6	36
45	Gaseous Mercury Capture by Copper-Activated Nanoporous Carbon Nitride. Energy & Fuels, 2018, 32, 8287-8295.	5.1	42
46	Removal of elemental mercury by Ce-Mn co-modified activated carbon catalyst. Catalysis Communications, 2017, 93, 62-66.	3.3	59
47	Effect of Ce and La on the activity of CuO/ZSM-5 and MnO x /ZSM-5 composites for elemental mercury removal at low temperature. Fuel, 2017, 194, 115-122.	6.4	58
48	High performance of Fe nanoparticles/carbon aerogel sorbents for H2S Removal. Chemical Engineering Journal, 2017, 313, 1051-1060.	12.7	55
49	Fabrication and Fractality of Fe2O3-CeO2/ZSM-5 Composites for High-Temperature Desulfurization. Colloids and Interfaces, 2017, 1, 10.	2.1	1
50	CeO2-La2O3/ZSM-5 sorbents for high-temperature H2S removal. Korean Journal of Chemical Engineering, 2016, 33, 1837-1845.	2.7	35
51	La2CuO4/ZSM-5 sorbents for high-temperature desulphurization. Fuel, 2016, 177, 251-259.	6.4	34
52	Cu Nanoparticles Inlaid Mesoporous Carbon Aerogels as a High Performance Desulfurizer. Environmental Science & Technology, 2016, 50, 5370-5378.	10.0	27
53	Synthesis and photocatalytic performance of CuO-CeO2/Graphene Oxide. Materials Letters, 2016, 185, 503-506.	2.6	30
54	CuO eO ₂ /ZSMâ€5 composites for reactive adsorption of hydrogen sulphide at high temperature. Canadian Journal of Chemical Engineering, 2016, 94, 2276-2281.	1.7	22

#	Article	IF	CITATIONS
55	Perovskite LaMnO3/ZSM-5 composites for H2S reactive adsorption at high temperature. Adsorption, 2016, 22, 327-334.	3.0	29
56	CeO 2 –MnO x /ZSM-5 sorbents for H 2 S removal at high temperature. Chemical Engineering Journal, 2016, 284, 862-871.	12.7	77