
Robert M Stupar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6623840/publications.pdf Version: 2024-02-01

POREDT M STUDAD

#	Article	IF	CITATIONS
1	Iron deficiency in soybean. Crop Science, 2022, 62, 36-52.	0.8	16
2	Protoplast Isolation, Transfection, and Gene Editing for Soybean (Glycine max). Methods in Molecular Biology, 2022, 2464, 173-186.	0.4	5
3	Fast neutron mutagenesis in soybean enriches for small indels and creates frameshift mutations. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	4
4	Development of <i>mPing</i> â€based activation tags for crop insertional mutagenesis. Plant Direct, 2021, 5, e00300.	0.8	6
5	Dissecting nematode resistance regions in soybean revealed pleiotropic effect of soybean cyst and reniform nematode resistance genes. Plant Genome, 2021, 14, e20083.	1.6	12
6	Mining Fiskeby III and Mandarin (Ottawa) Expression Profiles to Understand Iron Stress Tolerant Responses in Soybean. International Journal of Molecular Sciences, 2021, 22, 11032.	1.8	3
7	Similar Seed Composition Phenotypes Are Observed From CRISPR-Generated In-Frame and Knockout Alleles of a Soybean KASI Ortholog. Frontiers in Plant Science, 2020, 11, 1005.	1.7	11
8	Characterization of genetic heterogeneity within accessions in the USDA soybean germplasm collection. Plant Genome, 2020, 13, e20000.	1.6	8
9	Plant Genome Editing and the Relevance of Off-Target Changes. Plant Physiology, 2020, 183, 1453-1471.	2.3	68
10	Integration, abundance, and transmission of mutations and transgenes in a series of CRISPR/Cas9 soybean lines. BMC Biotechnology, 2020, 20, 10.	1.7	21
11	Identification of nodulationâ€related genes in <i>Medicago truncatula</i> using genomeâ€wide association studies and coâ€expression networks. Plant Direct, 2020, 4, e00220.	0.8	4
12	Screening populations for copy number variation using genotyping-by-sequencing: a proof of concept using soybean fast neutron mutants. BMC Genomics, 2019, 20, 634.	1.2	20
13	Construction and comparison of three referenceâ€quality genome assemblies for soybean. Plant Journal, 2019, 100, 1066-1082.	2.8	113
14	Identification and characterization of a fast-neutron-induced mutant with elevated seed protein content in soybean. Theoretical and Applied Genetics, 2019, 132, 2965-2983.	1.8	7
15	Functional analysis and development of a CRISPR/Cas9 allelic series for a CPR5 ortholog necessary for proper growth of soybean trichomes. Scientific Reports, 2019, 9, 14757.	1.6	28
16	Genomic changes and biochemical alterations of seed protein and oil content in a subset of fast neutron induced soybean mutants. BMC Plant Biology, 2019, 19, 420.	1.6	7
17	Wholeâ€genome reâ€sequencing reveals the impact of the interaction of copy number variants of the <i>rhg1</i> and <i>Rhg4</i> genes on broadâ€based resistance to soybean cyst nematode. Plant Biotechnology Journal, 2019, 17, 1595-1611.	4.1	65
18	Domestication in Real Time: The Curious Case of a Trigenomic Sunflower Population. Agronomy, 2019, 9, 704.	1.3	1

#	Article	IF	CITATIONS
19	Identification and Fineâ€Mapping of a Soybean Quantitative Trait Locus on Chromosome 5 Conferring Tolerance to Iron Deficiency Chlorosis. Plant Genome, 2019, 12, 190007.	1.6	14
20	Genome Editing in Soybean with CRISPR/Cas9. Methods in Molecular Biology, 2019, 1917, 217-234.	0.4	27
21	Soybean [Glycine max (L.) Merr.] Breeding: History, Improvement, Production and Future Opportunities. , 2019, , 431-516.		36
22	<scp>CRISPR</scp> /Cas9 and <scp>TALEN</scp> s generate heritable mutations for genes involved in small <scp>RNA</scp> processing of <i>Glycine max</i> and <i>Medicago truncatula</i> . Plant Biotechnology Journal, 2018, 16, 1125-1137.	4.1	147
23	The importance of genotype identity, genetic heterogeneity, and bioinformatic handling for properly assessing genomic variation in transgenic plants. BMC Biotechnology, 2018, 18, 38.	1.7	9
24	Neo-Domestication of an Interspecific Tetraploid Helianthus annuus × Helianthus tuberous Population That Segregates for Perennial Habit. Genes, 2018, 9, 422.	1.0	10
25	Genetic Architecture of Soybean Yield and Agronomic Traits. G3: Genes, Genomes, Genetics, 2018, 8, 3367-3375.	0.8	98
26	Validating Genome-Wide Association Candidates Controlling Quantitative Variation in Nodulation. Plant Physiology, 2017, 173, 921-931.	2.3	71
27	Exploring structural variation and gene family architecture with De Novo assemblies of 15 Medicago genomes. BMC Genomics, 2017, 18, 261.	1.2	87
28	An Induced Chromosomal Translocation in Soybean Disrupts a <i>KASI</i> Ortholog and Is Associated with a High-Sucrose and Low-Oil Seed Phenotype. G3: Genes, Genomes, Genetics, 2017, 7, 1215-1223.	0.8	42
29	Structural Variation and the Soybean Genome. Compendium of Plant Genomes, 2017, , 57-72.	0.3	Ο
30	Transcriptomic basis of genome by genome variation in a legumeâ€rhizobia mutualism. Molecular Ecology, 2017, 26, 6122-6135.	2.0	40
31	Dissecting the Genetic Basis of Local Adaptation in Soybean. Scientific Reports, 2017, 7, 17195.	1.6	37
32	Strategies for optimizing BioNano and Dovetail explored through a second reference quality assembly for the legume model, Medicago truncatula. BMC Genomics, 2017, 18, 578.	1.2	54
33	Hybrid assembly with long and short reads improves discovery of gene family expansions. BMC Genomics, 2017, 18, 541.	1.2	51
34	Fast neutron-induced structural rearrangements at a soybean NAP1 locus result in gnarled trichomes. Theoretical and Applied Genetics, 2016, 129, 1725-1738.	1.8	35
35	MicroRNA Maturation and MicroRNA Target Gene Expression Regulation Are Severely Disrupted in Soybean dicer-like1 Double Mutants. G3: Genes, Genomes, Genetics, 2016, 6, 423-433.	0.8	23
36	Environmental Association Analyses Identify Candidates for Abiotic Stress Tolerance in <i>Glycine soja</i> , the Wild Progenitor of Cultivated Soybeans. G3: Genes, Genomes, Genetics, 2016, 6, 835-843.	0.8	39

#	Article	IF	CITATIONS
37	Genomic variation and DNA repair associated with soybean transgenesis: a comparison to cultivars and mutagenized plants. BMC Biotechnology, 2016, 16, 41.	1.7	54
38	The Role of Deleterious Substitutions in Crop Genomes. Molecular Biology and Evolution, 2016, 33, 2307-2317.	3.5	83
39	Soybean (<i>Glycine max</i>) Mutant and Germplasm Resources: Current Status and Future Prospects. Current Protocols in Plant Biology, 2016, 1, 307-327.	2.8	9
40	Perennial Grain and Oilseed Crops. Annual Review of Plant Biology, 2016, 67, 703-729.	8.6	68
41	Modification of centromere structure: a promising approach for haploidline production in plant breeding. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 2015, 39, 557-562.	0.8	12
42	Identical Substitutions in Magnesium Chelatase Paralogs Result in Chlorophyll-Deficient Soybean Mutants. G3: Genes, Genomes, Genetics, 2015, 5, 123-131.	0.8	57
43	CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme. GM Crops and Food, 2015, 6, 243-252.	2.0	162
44	The Reflective Plant Breeding Paradigm: A Robust System of Germplasm Development to Support Strategic Diversification of Agroecosystems. Crop Science, 2014, 54, 1939-1948.	0.8	35
45	Potential Use of Perennial Sunflower to Reduce Blackbird Damage to Sunflower. Proceedings of the Vertebrate Pest Conference, 2014, 26, .	0.1	2
46	Genome Resilience and Prevalence of Segmental Duplications Following Fast Neutron Irradiation of Soybean. Genetics, 2014, 198, 967-981.	1.2	53
47	A Roadmap for Functional Structural Variants in the Soybean Genome. G3: Genes, Genomes, Genetics, 2014, 4, 1307-1318.	0.8	42
48	To the reference and beyond: understanding variation in plant genomes. Briefings in Functional Genomics, 2014, 13, 255-256.	1.3	1
49	Evaluating an interspecific Helianthus annuus×Helianthus tuberosus population for use in a perennial sunflower breeding program. Field Crops Research, 2014, 155, 254-264.	2.3	21
50	Insights from the Soybean (Glycine max and Glycine soja) Genome. Advances in Agronomy, 2013, , 177-204.	2.4	13
51	A re-sequencing based assessment of genomic heterogeneity and fast neutron-induced deletions in a common bean cultivar. Frontiers in Plant Science, 2013, 4, 210.	1.7	18
52	Genomic Heterogeneity and Structural Variation in Soybean Near Isogenic Lines. Frontiers in Plant Science, 2013, 4, 104.	1.7	12
53	Targeted Mutagenesis for Functional Analysis of Gene Duplication in Legumes. Methods in Molecular Biology, 2013, 1069, 25-42.	0.4	20
54	Structural Variants in the Soybean Genome Localize to Clusters of Biotic Stress-Response Genes Â. Plant Physiology, 2012, 159, 1295-1308.	2.3	175

#	Article	IF	CITATIONS
55	Genome Engineering of Crops with Designer Nucleases. Plant Genome, 2012, 5, 42-50.	1.6	102
56	Co-expression of soybean Dicer-like genes in response to stress and development. Functional and Integrative Genomics, 2012, 12, 671-682.	1.4	19
57	Breaking Tuber Dormancy in Helianthus tuberosus L. and Interspecific Hybrids of Helianthus annuus L. × Helianthus tuberosus. Hortscience: A Publication of the American Society for Hortcultural Science, 2012, 47, 1342-1346.	0.5	6
58	Targeted Mutagenesis of Duplicated Genes in Soybean with Zinc-Finger Nucleases Â. Plant Physiology, 2011, 156, 466-473.	2.3	260
59	Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nature Methods, 2011, 8, 67-69.	9.0	480
60	The Composition and Origins of Genomic Variation among Individuals of the Soybean Reference Cultivar Williams 82 Â Â. Plant Physiology, 2011, 155, 645-655.	2.3	137
61	Phenotypic and Genomic Analyses of a Fast Neutron Mutant Population Resource in Soybean Â. Plant Physiology, 2011, 156, 240-253.	2.3	175
62	Into the wild: The soybean genome meets its undomesticated relative. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21947-21948.	3.3	49
63	An Integrative Approach to Genomic Introgression Mapping Â. Plant Physiology, 2010, 154, 3-12.	2.3	45
64	Structural and Functional Divergence of a 1-Mb Duplicated Region in the Soybean (<i>Glycine max</i>) Genome and Comparison to an Orthologous Region from <i>Phaseolus vulgaris</i> Â Â. Plant Cell, 2010, 22, 2545-2561.	3.1	60
65	Transcriptome Analysis of the Barley–Deoxynivalenol Interaction: Evidence for a Role of Glutathione in Deoxynivalenol Detoxification. Molecular Plant-Microbe Interactions, 2010, 23, 962-976.	1.4	140
66	Reciprocal Silencing, Transcriptional Bias and Functional Divergence of Homeologs in Polyploid Cotton (Gossypium). Genetics, 2009, 182, 503-517.	1.2	212
67	Gene expression analyses in maize inbreds and hybrids with varying levels of heterosis. BMC Plant Biology, 2008, 8, 33.	1.6	145
68	Phenotypic and Transcriptomic Changes Associated With Potato Autopolyploidization. Genetics, 2007, 176, 2055-2067.	1.2	208
69	Nonadditive Expression and Parent-of-Origin Effects Identified by Microarray and Allele-Specific Expression Profiling of Maize Endosperm. Plant Physiology, 2007, 145, 411-425.	2.3	64
70	Allele-Specific Expression Patterns Reveal Biases and Embryo-Specific Parent-of-Origin Effects in Hybrid Maize. Plant Cell, 2007, 19, 2391-2402.	3.1	157
71	Natural Variation for Alleles Under Epigenetic Control by the Maize Chromomethylase <i>Zmet2</i> . Genetics, 2007, 177, 749-760.	1.2	31
72	Allelic variation and heterosis in maize: How do two halves make more than a whole?. Genome Research, 2007, 17, 264-275.	2.4	306

#	Article	IF	CITATIONS
73	Cis-transcriptional Variation in Maize Inbred Lines B73 and Mo17 Leads to Additive Expression Patterns in the F1 Hybrid. Genetics, 2006, 173, 2199-2210.	1.2	253
74	Structural Diversity and Differential Transcription of the Patatin Multicopy Gene Family During Potato Tuber Development. Genetics, 2006, 172, 1263-1275.	1.2	38
75	Fluorescence In Situ Hybridization Analysis Reveals Multiple Loci of Knob-associated DNA Elements in One-knob and Knobless Maize Lines. Journal of Histochemistry and Cytochemistry, 2004, 52, 1113-1116.	1.3	24
76	The HECT ubiquitin-protein ligase (UPL) family inArabidopsis: UPL3 has a specific role in trichome development. Plant Journal, 2003, 35, 729-742.	2.8	186
77	Molecular and Cytological Analyses of Large Tracks of Centromeric DNA Reveal the Structure and Evolutionary Dynamics of Maize Centromeres. Genetics, 2003, 163, 759-770.	1.2	155
78	Highly Condensed Potato Pericentromeric Heterochromatin Contains rDNA-Related Tandem Repeats. Genetics, 2002, 162, 1435-1444.	1.2	75
79	Instability of bacterial artificial chromosome (BAC) clones containing tandemly repeated DNA sequences. Genome, 2001, 44, 463-469.	0.9	38
80	A tandemly repeated DNA sequence is associated with both knob-like heterochromatin and a highly decondensed structure in the meiotic pachytene chromosomes of rice. Chromosoma, 2001, 110, 24-31.	1.0	59
81	Complex mtDNA constitutes an approximate 620-kb insertion on Arabidopsis thaliana chromosome 2: Implication of potential sequencing errors caused by large-unit repeats. Proceedings of the National	3.3	207