Cancan Rong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6623741/publications.pdf

Version: 2024-02-01

759233 713466 30 463 12 21 h-index citations g-index papers 30 30 30 411 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Optimization Design of Resonance Coils With High Misalignment Tolerance for Drone Wireless Charging Based on Genetic Algorithm. IEEE Transactions on Industry Applications, 2022, 58, 1242-1253.	4.9	42
2	Design and Optimization of the Low-Frequency Metasurface Shield for Wireless Power Transfer System. IEEE Transactions on Transportation Electrification, 2022, 8, 723-733.	7.8	5
3	Misalignment Insensitive Wireless Power Transfer System Using a Hybrid Transmitter for Autonomous Underwater Vehicles. IEEE Transactions on Industry Applications, 2022, 58, 1298-1306.	4.9	27
4	High-Efficiency Orientation Insensitive WPT Systems Using Magnetic Dipole Coil for Low-Power Devices. IEEE Transactions on Power Electronics, 2022, 37, 4985-4990.	7.9	13
5	Multi-DoF wireless power transfer systems based on magnetic dipole coils with multiple receivers. Journal of Power Electronics, 2022, 22, 534-546.	1.5	2
6	A Dual-Band Negative Permeability and Near-Zero Permeability Metamaterials for Wireless Power Transfer System. IEEE Transactions on Industrial Electronics, 2021, 68, 7072-7082.	7.9	29
7	Omnidirectional Free-Degree Wireless Power Transfer System Based on Magnetic Dipole Coils for Multiple Receivers. IEEE Access, 2021, 9, 81588-81600.	4.2	19
8	Analysis and Design of Asymmetric Mid-Range Wireless Power Transfer System with Metamaterials. Energies, 2021, 14, 1348.	3.1	8
9	Wireless Power Transfer System Based on Focused and Shielding Metamaterials. , 2021, , .		3
10	A critical review of metamaterial in wireless power transfer system. IET Power Electronics, 2021, 14, 1541-1559.	2.1	20
11	Design and Analysis of an Omnidirectional Dual-Band Wireless Power Transfer System. IEEE Transactions on Antennas and Propagation, 2021, 69, 3493-3502.	5.1	18
12	Optimization Design of Wireless Charging System with Uniform Magnetic Field for Multi-Drone. , 2021, , .		0
13	Design and Analysis of Segmented Dipole Coil for Scalable Wireless Power Transfer to Multiple Devices. , 2021, , .		0
14	Comprehensive Analysis of Side-Placed Metamaterials in Wireless Power Transfer System. IEEE Access, 2020, 8, 152900-152908.	4.2	12
15	Enhancing the Stability of Medium Range and Misalignment Wireless Power Transfer System by Negative Magnetic Metamaterials. Materials, 2020, 13, 5695.	2.9	8
16	Equivalent circuit method for Muâ€Negativeâ€Magnetic and Muâ€Nearâ€Zero metamaterials in wireless power transfer system. IET Power Electronics, 2020, 13, 3056-3064.	2.1	8
17	Magnetic Shielding of Wireless Power Transfer Using Zero Permeability Metamaterial Slab. , 2020, , .		0
18	Effective Permeability Retrieval of Near-field Metamaterial based on Equivalent-Circuit Model., 2019,,.		3

#	Article	IF	CITATIONS
19	Analysis and Optimized Design of Metamaterials for Mid-Range Wireless Power Transfer Using a Class-E RF Power Amplifier. Applied Sciences (Switzerland), 2019, 9, 26.	2.5	14
20	A Novel Approach to Reach Impedance Matching in Wireless Power Transfer Systems. Applied Sciences (Switzerland), 2019, 9, 976.	2.5	3
21	Analysis of wireless power transfer based on metamaterial using equivalent circuit. Journal of Engineering, 2019, 2019, 2032-2035.	1.1	7
22	Shielding the magnetic field of wireless power transfer system using zeroâ€permeability metamaterial. Journal of Engineering, 2019, 2019, 1812-1815.	1.1	17
23	Investigation of Magnetically Near-Field Metamaterials in Wireless Power Transfer System., 2019,,.		3
24	Investigation of Magnetic Field Shielding by Mesh Aluminum Sheet in Wireless Power Transfer System. , 2019, , .		4
25	Investigation of Negative and Near-Zero Permeability Metamaterials for Increased Efficiency and Reduced Electromagnetic Field Leakage in a Wireless Power Transfer System. IEEE Transactions on Electromagnetic Compatibility, 2019, 61, 1438-1446.	2.2	50
26	Planar Multiple-Antiparallel Square Transmitter for Position-Insensitive Wireless Power Transfer. IEEE Antennas and Wireless Propagation Letters, 2018, 17, 188-192.	4.0	51
27	Multiband Ultrathin Polarization-Insensitive Terahertz Perfect Absorbers With Complementary Metamaterial and Resonator Based on High-Order Electric and Magnetic Resonances. IEEE Photonics Journal, 2018, 10, 1-11.	2.0	20
28	All-Dielectric Wet Sandy Soil Broadband Tunable Absorber Based on Interference Theory. Journal of Electronic Materials, 2018, 47, 5572-5581.	2.2	3
29	Optimisation analysis of coil configuration and circuit model for asymmetric wireless power transfer system. IET Microwaves, Antennas and Propagation, 2018, 12, 1132-1139.	1.4	9
30	Optimisation design for series–series dynamic WPT system maintaining stable transfer power. IET Power Electronics, 2017, 10, 987-995.	2.1	65