Aziz Ur Rehman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6623563/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Surface induced growth of ZIF-67 at Co-layered double hydroxide: Removal of methylene blue and methyl orange from water. Applied Clay Science, 2020, 190, 105564.	5.2	134
2	Combining structurally ordered intermetallic nodes: Kinetic and isothermal studies for removal of malachite green and methyl orange with mechanistic aspects. Microchemical Journal, 2021, 164, 105973.	4.5	90
3	Removal of Congo Red from Aqueous Solution by Anion Exchange Membrane (EBTAC): Adsorption Kinetics and Themodynamics. Materials, 2015, 8, 4147-4161.	2.9	63
4	Fabrication of Periodic Mesoporous Organo Silicate (PMOS) composites of Ag and ZnO: Photo-catalytic degradation of methylene blue and methyl orange. Inorganic Chemistry Communication, 2021, 123, 108357.	3.9	46
5	Versatile Ag2O and ZnO nanomaterials fabricated via annealed Ag-PMOS and ZnO-PMOS: An efficient photocatalysis tool for azo dyes. Journal of Molecular Liquids, 2022, 356, 119036.	4.9	39
6	Photo-Fenton activated C3N4x/AgOy@Co1-xBi0.1-yO7 dual s-scheme heterojunction towards degradation of organic pollutants. Optical Materials, 2022, 126, 112199.	3.6	38
7	Design of Anion Exchange Membranes and Electrodialysis Studies for Water Desalination. Materials, 2016, 9, 365.	2.9	37
8	Enhanced adsorption removal of methyl orange from water by porous bimetallic Ni/Co MOF composite: a systematic study of adsorption kinetics. International Journal of Environmental Analytical Chemistry, 2023, 103, 4841-4856.	3.3	34
9	Kinetics, isothermal and mechanistic insight into the adsorption of eosin yellow and malachite green from water via tri-metallic layered double hydroxide nanosheets. Korean Journal of Chemical Engineering, 2022, 39, 216-226.	2.7	34
10	Nano-engineering of prussian blue analogues to core-shell architectures: Enhanced catalytic activity for zinc-air battery. Journal of Colloid and Interface Science, 2020, 578, 89-95.	9.4	31
11	Nanoscale ZrRGOCuFe layered double hydroxide composites for enhanced photocatalytic degradation of dye contaminant. Materials Science in Semiconductor Processing, 2021, 128, 105748.	4.0	31
12	BPPO-Based Anion Exchange Membranes for Acid Recovery via Diffusion Dialysis. Materials, 2017, 10, 266.	2.9	30
13	A Comparative Study of Cerium- and Ytterbium-Based GO/g-C3N4/Fe2O3 Composites for Electrochemical and Photocatalytic Applications. Applied Sciences (Switzerland), 2021, 11, 9000.	2.5	30
14	Synthesis of porous secondary metal-doped MOFs for removal of Rhodamine B from water: Role of secondary metal on efficiency and kinetics. Surfaces and Interfaces, 2021, 25, 101261.	3.0	29
15	Synthesis of nanoadsorbent entailed mesoporous organosilica for decontamination of methylene blue and methyl orange from water. International Journal of Environmental Analytical Chemistry, 2023, 103, 8799-8812.	3.3	26
16	Quality assessment of the noncarbonated-bottled drinking water: comparison of their treatment techniques. International Journal of Environmental Analytical Chemistry, 2022, 102, 8195-8206.	3.3	24
17	Design of dielectric and photocatalytic properties of Dy–Ni substituted Ca0.5 Pb0.5â^xFe12â^yO19 M-type hexaferrites. Journal of Materials Science: Materials in Electronics, 2021, 32, 16255-16268.	2.2	24
18	Nanostructure Engineering of Metal–Organic Derived Frameworks: Cobalt Phosphide Embedded in Carbon Nanotubes as an Efficient ORR Catalyst. Molecules, 2021, 26, 6672.	3.8	22

Aziz Ur Rehman

#	Article	IF	CITATIONS
19	Synthesis of DMEA-Grafted Anion Exchange Membrane for Adsorptive Discharge of Methyl Orange from Wastewaters. Membranes, 2021, 11, 166.	3.0	19
20	Nanostructure engineering by surficial induced approach: Porous metal oxide-carbon nanotube composite for lithium-ion battery. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 273, 115417.	3.5	18
21	Au@GO@g-C3N4 and Fe2O3 nanocomposite for efficient photocatalytic and electrochemical applications. Surfaces and Interfaces, 2021, 26, 101399.	3.0	16
22	Structural ElucidationÂwith Improved Dielectric and Magnetic Properties of Sol–Gel Synthesized Cr3+ Substituted M-Type Sr2+ Hexaferrites. Journal of Materials Engineering and Performance, 2022, 31, 1530-1539.	2.5	14
23	Recent Advances in Synthesis and Applications of Singleâ€Atom Catalysts for Rechargeable Batteries. Chemical Record, 2022, 22, .	5.8	14
24	Electrogenerated chemiluminescence of /2-(dibutylamino)ethanol system. Journal of Electroanalytical Chemistry, 2013, 688, 45-48.	3.8	10
25	Silver and yttrium-doped bismuth vanadate for photoluminescent activity and boosted visible light-induced photodegradation. Journal of Materials Science: Materials in Electronics, 2020, 31, 21082-21096.	2.2	8
26	Energizing periodic mesoporous organosilica (PMOS) with bismuth and cerium for photoâ€degrading methylene blue and methyl orange in water. Water Environment Research, 2021, 93, 1116-1125.	2.7	7
27	Efficient electrochemical and photocatalytic performances of Cu-doped BaxAlxO3 nanocomposites. Surfaces and Interfaces, 2022, 32, 102116.	3.0	7
28	Electroconductive Composites from Polystyrene Block Copolymers and Cu–Alumina Filler. Materials, 2016, 9, 989.	2.9	2