
Connie S Schmaljohn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6622802/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Mouse Model for Evaluation of Prophylaxis and Therapy of Ebola Hemorrhagic Fever. Journal of Infectious Diseases, 1998, 178, 651-661.	4.0	418
2	Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity. Human Vaccines and Immunotherapeutics, 2017, 13, 2837-2848.	3.3	168
3	DNA Vaccines Expressing either the GP or NP Genes of Ebola Virus Protect Mice from Lethal Challenge. Virology, 1998, 246, 134-144.	2.4	166
4	Preclinical and clinical progress of particle-mediated DNA vaccines for infectious diseases. Methods, 2006, 40, 86-97.	3.8	138
5	Comparison of individual and combination DNA vaccines for B. anthracis, Ebola virus, Marburg virus and Venezuelan equine encephalitis virus. Vaccine, 2003, 21, 4071-4080.	3.8	119
6	Complete nucleotide sequence of the M RNA segment of rift valley fever virus. Virology, 1985, 144, 228-245.	2.4	117
7	Immunogenicity of combination DNA vaccines for Rift Valley fever virus, tick-borne encephalitis virus, Hantaan virus, and Crimean Congo hemorrhagic fever virus. Vaccine, 2006, 24, 4657-4666.	3.8	117
8	Influences of Glycosylation on Antigenicity, Immunogenicity, and Protective Efficacy of Ebola Virus GP DNA Vaccines. Journal of Virology, 2007, 81, 1821-1837.	3.4	114
9	Endothelial Cell Permeability during Hantavirus Infection Involves Factor XII-Dependent Increased Activation of the Kallikrein-Kinin System. PLoS Pathogens, 2013, 9, e1003470.	4.7	88
10	A DNA Vaccine for Venezuelan Equine Encephalitis Virus Delivered by Intramuscular Electroporation Elicits High Levels of Neutralizing Antibodies in Multiple Animal Models and Provides Protective Immunity to Mice and Nonhuman Primates. Vaccine Journal, 2011, 18, 707-716.	3.1	75
11	Codon-optimized filovirus DNA vaccines delivered by intramuscular electroporation protect cynomolgus macaques from lethal Ebola and Marburg virus challenges. Human Vaccines and Immunotherapeutics, 2015, 11, 1991-2004.	3.3	61
12	A DNA vaccine delivered by dermal electroporation fully protects cynomolgus macaques against Lassa fever. Human Vaccines and Immunotherapeutics, 2017, 13, 2902-2911.	3.3	61
13	A Phase 1 clinical trial of Hantaan virus and Puumala virus M-segment DNA vaccines for hemorrhagic fever with renal syndrome. Vaccine, 2012, 30, 1951-1958.	3.8	58
14	GP38-targeting monoclonal antibodies protect adult mice against lethal Crimean-Congo hemorrhagic fever virus infection. Science Advances, 2019, 5, eaaw9535.	10.3	56
15	Immune-Mediated Systemic Vasculitis as the Proposed Cause of Sudden-Onset Sensorineural Hearing Loss following Lassa Virus Exposure in Cynomolgus Macaques. MBio, 2018, 9, .	4.1	52
16	A Phase 1 clinical trial of a DNA vaccine for Venezuelan equine encephalitis delivered by intramuscular or intradermal electroporation. Vaccine, 2016, 34, 3607-3612.	3.8	51
17	Comparison of the protective efficacy of DNA and baculovirus-derived protein vaccines for EBOLA virus in guinea pigs. Virus Research, 2003, 92, 187-193.	2.2	50
18	Enhanced Efficacy of a Codon-Optimized DNA Vaccine Encoding the Glycoprotein Precursor Gene of Lassa Virus in a Guinea Pig Disease Model When Delivered by Dermal Electroporation. Vaccines, 2013, 1, 262-277	4.4	46

CONNIE S SCHMALJOHN

#	Article	IF	CITATIONS
19	Self-Amplifying RNA Vaccines for Venezuelan Equine Encephalitis Virus Induce Robust Protective Immunogenicity in Mice. Molecular Therapy, 2019, 27, 850-865.	8.2	45
20	Evaluation of Tick-Borne Encephalitis DNA Vaccines in Monkeys. Virology, 1999, 263, 166-174.	2.4	43
21	Immunogenicity and protective efficacy of a DNA vaccine against Venezuelan equine encephalitis virus aerosol challenge in nonhuman primates. Vaccine, 2010, 28, 7345-7350.	3.8	43
22	A multiagent filovirus DNA vaccine delivered by intramuscular electroporation completely protects mice from ebola and Marburg virus challenge. Human Vaccines and Immunotherapeutics, 2012, 8, 1703-1706.	3.3	38
23	Directed molecular evolution improves the immunogenicity and protective efficacy of a Venezuelan equine encephalitis virus DNA vaccine. Vaccine, 2009, 27, 4152-4160.	3.8	37
24	Progress in recombinant DNA-derived vaccines for Lassa virus and filoviruses. Virus Research, 2011, 162, 148-161.	2.2	33
25	Mapping of Ebolavirus Neutralization by Monoclonal Antibodies in the ZMapp Cocktail Using Cryo-Electron Tomography and Studies of Cellular Entry. Journal of Virology, 2016, 90, 7618-7627.	3.4	32
26	DNA vaccines for biodefense. Expert Review of Vaccines, 2009, 8, 1739-1754.	4.4	31
27	Vaccines against Ebola virus and Marburg virus: recent advances and promising candidates. Human Vaccines and Immunotherapeutics, 2019, 15, 2359-2377.	3.3	31
28	Mixing of M segment DNA vaccines to Hantaan virus and Puumala virus reduces their immunogenicity in hamsters. Vaccine, 2008, 26, 5177-5181.	3.8	29
29	DNA vaccines for HFRS: Laboratory and clinical studies. Virus Research, 2014, 187, 91-96.	2.2	27
30	Human Polyclonal Antibodies Produced through DNA Vaccination of Transchromosomal Cattle Provide Mice with Post-Exposure Protection against Lethal Zaire and Sudan Ebolaviruses. PLoS ONE, 2015, 10, e0137786.	2.5	24
31	Nuclear Relocalization of Polyadenylate Binding Protein during Rift Valley Fever Virus Infection Involves Expression of the NSs Gene. Journal of Virology, 2013, 87, 11659-11669.	3.4	22
32	An immunoinformatics-derived DNA vaccine encoding human class II T cell epitopes of Ebola virus, Sudan virus, and Venezuelan equine encephalitis virus is immunogenic in HLA transgenic mice. Human Vaccines and Immunotherapeutics, 2017, 13, 2824-2836.	3.3	21
33	Immunogenicity of a protective intradermal DNA vaccine against lassa virus in cynomolgus macaques. Human Vaccines and Immunotherapeutics, 2019, 15, 2066-2074.	3.3	21
34	Rift Valley fever virus NSS gene expression correlates with a defect in nuclear mRNA export. Virology, 2015, 486, 88-93.	2.4	20
35	Nanoplasmid Vectors Co-expressing Innate Immune Agonists Enhance DNA Vaccines for Venezuelan Equine Encephalitis Virus and Ebola Virus. Molecular Therapy - Methods and Clinical Development, 2020, 17, 810-821.	4.1	20
36	Discovery of hantaviruses and of the Hantavirus genus: Personal and historical perspectives of the Presidents of the International Society of Hantaviruses. Virus Research, 2014, 187, 2-5.	2.2	19

CONNIE S SCHMALJOHN

#	Article	IF	CITATIONS
37	DNA vaccines elicit durable protective immunity against individual or simultaneous infections with Lassa and Ebola viruses in guinea pigs. Human Vaccines and Immunotherapeutics, 2017, 13, 3010-3019.	3.3	19
38	Alterations in the host transcriptome in vitro following Rift Valley fever virus infection. Scientific Reports, 2017, 7, 14385.	3.3	17
39	Comparative pathology study of Venezuelan, eastern, and western equine encephalitis viruses in non-human primates. Antiviral Research, 2020, 182, 104875.	4.1	12
40	A Multiagent Alphavirus DNA Vaccine Delivered by Intramuscular Electroporation Elicits Robust and Durable Virus-Specific Immune Responses in Mice and Rabbits and Completely Protects Mice against Lethal Venezuelan, Western, and Eastern Equine Encephalitis Virus Aerosol Challenges. Journal of Immunology Research, 2018, 2018, 1-15.	2.2	11
41	Development of a bead-based immunoassay using virus-like particles for detection of alphaviral humoral response. Journal of Virological Methods, 2019, 270, 12-17.	2.1	11
42	Epitope mapping of Ebola virus dominant and subdominant glycoprotein epitopes facilitates construction of an epitope-based DNA vaccine able to focus the antibody response in mice. Human Vaccines and Immunotherapeutics, 2017, 13, 2883-2893.	3.3	10
43	Human Polyclonal Antibodies Produced by Transchromosomal Cattle Provide Partial Protection Against Lethal Zaire Ebolavirus Challenge in Rhesus Macaques. Journal of Infectious Diseases, 2018, 218, S658-S661.	4.0	10
44	Phosphoproteomic analysis reveals Smad protein family activation following Rift Valley fever virus infection. PLoS ONE, 2018, 13, e0191983.	2.5	10
45	Multivalent DNA Vaccines as a Strategy to Combat Multiple Concurrent Epidemics: Mosquito-Borne and Hemorrhagic Fever Viruses. Viruses, 2021, 13, 382.	3.3	9
46	The genetic adjuvant IL-12 enhances the protective efficacy of a DNA vaccine for Venezuelan equine encephalitis virus delivered by intramuscular injection in mice. Antiviral Research, 2018, 159, 113-121.	4.1	8
47	The Genetic Adjuvants Interleukin-12 and Granulocyte-Macrophage Colony Stimulating Factor Enhance the Immunogenicity of an Ebola Virus Deoxyribonucleic Acid Vaccine in Mice. Journal of Infectious Diseases, 2018, 218, S519-S527.	4.0	8
48	Combinatorial peptide-based epitope mapping from Ebola virus DNA vaccines and infections reveals residue-level determinants of antibody binding. Human Vaccines and Immunotherapeutics, 2017, 13, 2953-2966.	3.3	4
49	Editorial overview: Lassa virus. Current Opinion in Virology, 2019, 37, vii-ix.	5.4	2
50	Future Approaches to DNA Vaccination Against Hemorrhagic Fever Viruses. Methods in Molecular Biology, 2018, 1604, 339-348.	0.9	1
51	Protocols to Assess Coagulation Following In Vitro Infection with Hemorrhagic Fever Viruses. Methods in Molecular Biology, 2018, 1604, 405-417.	0.9	1