Candice N Hirsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6622429/publications.pdf

Version: 2024-02-01

66 papers

5,010 citations

32 h-index 63 g-index

88 all docs 88 docs citations

88 times ranked 6146 citing authors

#	Article	IF	CITATIONS
1	Variability in changes of acrylamide precursors during nixtamalization for masa production. LWT - Food Science and Technology, 2022, 161, 113400.	2.5	О
2	Genomeâ€wide loss of <scp>CHH</scp> methylation with limited transcriptome changes in <i>Setaria viridis</i> DOMAINS REARRANGED METHYLTRANSFERASE (<scp>DRM</scp>) mutants. Plant Journal, 2022, 111, 103-116.	2.8	2
3	Opportunities and challenges in phenotyping row crops using droneâ€based RGB imaging. The Plant Phenome Journal, 2022, 5, .	1.0	9
4	Singleâ€parent expression drives dynamic gene expression complementation in maize hybrids. Plant Journal, 2021, 105, 93-107.	2.8	16
5	How the pan-genome is changing crop genomics and improvement. Genome Biology, 2021, 22, 3.	3.8	142
6	Utilizing temporal measurements from UAVs to assess root lodging in maize and its impact on productivity. Field Crops Research, 2021, 262, 108014.	2.3	18
7	Stability of DNA methylation and chromatin accessibility in structurally diverse maize genomes. G3: Genes, Genomes, Genetics, 2021, $11,\ldots$	0.8	3
8	Whole-genome variation of transposable element insertions in a maize diversity panel. G3: Genes, Genomes, Genetics, 2021, 11 , .	0.8	16
9	Genomic variation within the maize stiffâ€stalk heterotic germplasm pool. Plant Genome, 2021, 14, e20114.	1.6	14
10	Genetic control of kernel compositional variation in a maize diversity panel. Plant Genome, 2021, 14, e20115.	1.6	7
11	Predicting moisture content during maize nixtamalization using machine learning with NIR spectroscopy. Theoretical and Applied Genetics, 2021, 134, 3743-3757.	1.8	3
12	De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. Science, 2021, 373, 655-662.	6.0	282
13	Wholeâ€genome assembly and annotation of northern wild rice, <i>Zizania palustris</i> L., supports a wholeâ€genome duplication in the <i>Zizania</i> genus. Plant Journal, 2021, 107, 1802-1818.	2.8	7
14	The importance of dominance and genotype-by-environment interactions on grain yield variation in a large-scale public cooperative maize experiment. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	52
15	Assessing the regulatory potential of transposable elements using chromatin accessibility profiles of maize transposons. Genetics, 2021, 217, 1-13.	1.2	14
16	Relative utility of agronomic, phenological, and morphological traits for assessing genotypeâ€byâ€environment interaction in maize inbreds. Crop Science, 2020, 60, 62-81.	0.8	21
17	Effect of sequence depth and length in long-read assembly of the maize inbred NC358. Nature Communications, 2020, 11, 2288.	5 . 8	39
18	UAVâ€based imaging platform for monitoring maize growth throughout development. Plant Direct, 2020, 4, e00230.	0.8	25

#	Article	IF	CITATIONS
19	Meta Gene Regulatory Networks in Maize Highlight Functionally Relevant Regulatory Interactions. Plant Cell, 2020, 32, 1377-1396.	3.1	60
20	Characterizing introgression-by-environment interactions using maize near isogenic lines. Theoretical and Applied Genetics, 2020, 133, 2761-2773.	1.8	2
21	Maize genomes to fields (G2F): 2014–2017 field seasons: genotype, phenotype, climatic, soil, and inbred ear image datasets. BMC Research Notes, 2020, 13, 71.	0.6	38
22	Using multiple reference genomes to identify and resolve annotation inconsistencies. BMC Genomics, 2020, 21, 281.	1,2	10
23	Variation and Inheritance of Small RNAs in Maize Inbreds and F1 Hybrids. Plant Physiology, 2020, 182, 318-331.	2.3	14
24	Utility of Climatic Information via Combining Ability Models to Improve Genomic Prediction for Yield Within the Genomes to Fields Maize Project. Frontiers in Genetics, 2020, 11, 592769.	1.1	44
25	Gapless assembly of maize chromosomes using long-read technologies. Genome Biology, 2020, 21, 121.	3.8	101
26	Transposable elements contribute to dynamic genome content in maize. Plant Journal, 2019, 100, 1052-1065.	2.8	76
27	Foodâ€Grade Maize Composition, Evaluation, and Genetics for Masaâ€Based Products. Crop Science, 2019, 59, 1392-1405.	0.8	15
28	Monitoring the interplay between transposable element families and DNA methylation in maize. PLoS Genetics, 2019, 15, e1008291.	1.5	56
29	Genome-Wide Association and Gene Co-expression Network Analyses Reveal Complex Genetics of Resistance to Goss's Wilt of Maize. G3: Genes, Genomes, Genetics, 2019, 9, 3139-3152.	0.8	6
30	Maize <i>sugary enhancer1</i> (<i>se1</i>) is a gene affecting endosperm starch metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20776-20785.	3.3	36
31	Dynamic Patterns of Gene Expression Additivity and Regulatory Variation throughout Maize Development. Molecular Plant, 2019, 12, 410-425.	3.9	69
32	Genome-wide association analysis of stalk biomass and anatomical traits in maize. BMC Plant Biology, 2019, 19, 45.	1.6	77
33	Multivariate analyses of root phenotype and dynamic transcriptome underscore valuable root traits and waterâ€deficit responsive gene networks in maize. Plant Direct, 2019, 3, e00130.	0.8	8
34	Development of a Multiparent Population for Genetic Mapping and Allele Discovery in Six-Row Barley. Genetics, 2019, 213, 595-613.	1.2	23
35	Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biology, 2019, 20, 275.	3.8	579
36	Genomic Dissection of Nonhost Resistance to Wheat Stem Rust in Brachypodium distachyon. Molecular Plant-Microbe Interactions, 2019, 32, 392-400.	1.4	4

3

#	Article	IF	CITATIONS
37	Weeding out bad alleles. Nature Plants, 2018, 4, 193-194.	4.7	3
38	The limited role of differential fractionation in genome content variation and function in maize ($<$ i> $>$ Zea mays L $<$ li> $>$.) inbred lines. Plant Journal, 2018, 93, 131-141.	2.8	42
39	The Maize Pan-Genome. Compendium of Plant Genomes, 2018, , 13-29.	0.3	8
40	Tandem Duplicate Genes in Maize Are Abundant and Date to Two Distinct Periods of Time. G3: Genes, Genomes, Genetics, 2018, 8, 3049-3058.	0.8	13
41	Genetic Fineâ€Mapping of a Quantitative Trait Locus (QTL) Associated with Embryogenic Tissue Culture Response and Plant Regeneration Ability in Maize (<i>Zea mays</i> L.). Plant Genome, 2018, 11, 170111.	1.6	17
42	Genotype-by-environment interactions affecting heterosis in maize. PLoS ONE, 2018, 13, e0191321.	1.1	51
43	The effect of artificial selection on phenotypic plasticity in maize. Nature Communications, 2017, 8, 1348.	5.8	105
44	Natural variation for gene expression responses to abiotic stress in maize. Plant Journal, 2017, 89, 706-717.	2.8	145
45	An Expanded Maize Gene Expression Atlas based on RNA Sequencing and its Use to Explore Root Development. Plant Genome, 2016, 9, plantgenome2015.04.0025.	1.6	289
46	Draft Assembly of Elite Inbred Line PH207 Provides Insights into Genomic and Transcriptome Diversity in Maize. Plant Cell, 2016, 28, 2700-2714.	3.1	183
47	A Toolbox of Potato Genetic and Genomic Resources. American Journal of Potato Research, 2016, 93, 21-32.	0.5	3
48	Evidence for maternal control of seed size in maize from phenotypic and transcriptional analysis. Journal of Experimental Botany, 2016, 67, 1907-1917.	2.4	47
49	Genomic limitations to <scp>RNA</scp> sequencing expression profiling. Plant Journal, 2015, 84, 491-503.	2.8	34
50	Shared Genomic Regions Between Derivatives of a Large Segregating Population of Maize Identified Using Bulked Segregant Analysis Sequencing and Traditional Linkage Analysis. G3: Genes, Genomes, Genetics, 2015, 5, 1593-1602.	0.8	37
51	Transposable Elements Contribute to Activation of Maize Genes in Response to Abiotic Stress. PLoS Genetics, 2015, 11, e1004915.	1.5	346
52	RNA-directed DNA methylation enforces boundaries between heterochromatin and euchromatin in the maize genome. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14728-14733.	3.3	179
53	Whole Transcriptome Profiling of Maize during Early Somatic Embryogenesis Reveals Altered Expression of Stress Factors and Embryogenesis-Related Genes. PLoS ONE, 2014, 9, e111407.	1.1	96
54	Spud DB: A Resource for Mining Sequences, Genotypes, and Phenotypes to Accelerate Potato Breeding. Plant Genome, 2014, 7, plantgenome2013.12.0042.	1.6	82

#	Article	IF	CITATIONS
55	Phenotypic and Transcriptional Analysis of Divergently Selected Maize Populations Reveals the Role of Developmental Timing in Seed Size Determination Â. Plant Physiology, 2014, 165, 658-669.	2.3	37
56	Insights into the Maize Pan-Genome and Pan-Transcriptome Â. Plant Cell, 2014, 26, 121-135.	3.1	498
57	Reduced representation approaches to interrogate genome diversity in large repetitive plant genomes. Briefings in Functional Genomics, 2014, 13, 257-267.	1.3	53
58	Insights into the Effects of Long-Term Artificial Selection on Seed Size in Maize. Genetics, 2014, 198, 409-421.	1.2	38
59	QTL mapping and phenotypic variation for root architectural traits in maize (Zea mays L.). Theoretical and Applied Genetics, 2014, 127, 2293-2311.	1.8	90
60	A Genome-Wide Scan for Evidence of Selection in a Maize Population Under Long-Term Artificial Selection for Ear Number. Genetics, 2014, 196, 829-840.	1.2	63
61	Generation of Transcript Assemblies and Identification of Single Nucleotide Polymorphisms from Seven Lowland and Upland Cultivars of Switchgrass. Plant Genome, 2014, 7, plantgenome2013.12.0041.	1.6	6
62	Genetic and Morphometric Analysis of Cob Architecture and Biomass-Related Traits in the Intermated B73 × Mo17 Recombinant Inbred Lines of Maize. Bioenergy Research, 2013, 6, 903-916.	2.2	8
63	Tapping the Promise of Genomics in Species with Complex, Nonmodel Genomes. Annual Review of Plant Biology, 2013, 64, 89-110.	8.6	53
64	Retrospective View of North American Potato (<i>Solanum tuberosum</i> L.) Breeding in the 20th and 21st Centuries. G3: Genes, Genomes, Genetics, 2013, 3, 1003-1013.	0.8	171
65	Marker Density and Read Depth for Genotyping Populations Using Genotyping-by-Sequencing. Genetics, 2013, 193, 1073-1081.	1.2	206
66	Maize Gene Atlas Developed by RNA Sequencing and Comparative Evaluation of Transcriptomes Based on RNA Sequencing and Microarrays. PLoS ONE, 2013, 8, e61005.	1.1	152