
Md Meftahul Ferdaus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6622388/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiobjective Automated Type-2 Parsimonious Learning Machine to Forecast Time-Varying Stock Indices Online. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 2874-2887.	9.3	6
2	Performance Improvement of a Parsimonious Learning Machine Using Metaheuristic Approaches. IEEE Transactions on Cybernetics, 2022, 52, 7277-7290.	9.5	3
3	Significance of activation functions in developing an online classifier for semiconductor defect detection. Knowledge-Based Systems, 2022, 248, 108818.	7.1	5
4	Generic Evolving Self-Organizing Neuro-Fuzzy Control of Bio-Inspired Unmanned Aerial Vehicles. IEEE Transactions on Fuzzy Systems, 2020, 28, 1542-1556.	9.8	28
5	Towards the use of fuzzy logic systems in rotary wing unmanned aerial vehicle: a review. Artificial Intelligence Review, 2020, 53, 257-290.	15.7	24
6	PAC: A novel self-adaptive neuro-fuzzy controller for micro aerial vehicles. Information Sciences, 2020, 512, 481-505.	6.9	34
7	Development of Hyperplane-based Adaptive T-S Fuzzy Controller for Micro Aerial Robots. , 2019, , .		0
8	Adaptive Neural Altitude Control and Attitude Stabilization of a Hexacopter with Uncertain Dynamics. , 2019, , .		3
9	PALM: An Incremental Construction of Hyperplanes for Data Stream Regression. IEEE Transactions on Fuzzy Systems, 2019, 27, 2115-2129.	9.8	39
10	Red-FLC: an Adaptive Fuzzy Logic Controller with Reduced Learning Parameters. , 2019, , .		0
11	Online Takagi-Sugeno Fuzzy Identification of a Quadcopter Using Experimental Input-Output Data. , 2019, , .		3
12	Online identification of a rotary wing Unmanned Aerial Vehicle from data streams. Applied Soft Computing Journal, 2019, 76, 313-325.	7.2	9
13	Development of C-Means Clustering Based Adaptive Fuzzy Controller for a Flapping Wing Micro Air Vehicle. Journal of Artificial Intelligence and Soft Computing Research, 2019, 9, 99-109.	4.3	17
14	A state of art on magneto-rheological materials and their potential applications. Journal of Intelligent Material Systems and Structures, 2018, 29, 2051-2095.	2.5	198
15	A Generic Self-Evolving Neuro-Fuzzy Controller Based High-Performance Hexacopter Altitude Control System. , 2018, , .		13
16	A Novel Self-Organizing Neuro-Fuzzy based Intelligent Control System for a AR.Drone Quadcopter. , 2018, , .		2
17	Big Data Analytics based on PANFIS MapReduce. Procedia Computer Science, 2018, 144, 140-152.	2.0	3
18	Fuzzy clustering based nonlinear system identification and controller development of Pixhawk based quadcopter. , 2017, , .		27

2

MD MEFTAHUL FERDAUS

#	Article	IF	CITATIONS
19	Modelling and performance evaluation of energy harvesting linear magnetorheological (MR) damper. Journal of Low Frequency Noise Vibration and Active Control, 2017, 36, 177-192.	2.9	15
20	A review of advances in magnetorheological dampers: their design optimization and applications. Journal of Zhejiang University: Science A, 2017, 18, 991-1010.	2.4	65
21	Fuzzy clustering based modelling and adaptive controlling of a flapping wing micro air vehicle. , 2017, , .		7
22	Evolving neuro-fuzzy system based online identification of a bio-inspired flapping wing micro aerial vehicle. , 2017, , .		1
23	Evolving fuzzy inference system based online identification and control of a quadcopter unmanned aerial vehicle. , 2017, , .		4
24	Advancement in energy harvesting magneto-rheological fluid damper: A review. Korea Australia Rheology Journal, 2016, 28, 355-379.	1.7	47
25	Design and modeling of energy generated magneto rheological damper. Korea Australia Rheology Journal, 2016, 28, 67-74.	1.7	13
26	Development of an simplified modeling control system for maximization of polymerization in a pilot plant. , 2015, , .		0
27	ANSYS finite element design of an energy saving magneto-rheological damper with improved dispersion stability. Journal of Mechanical Science and Technology, 2015, 29, 2793-2802.	1.5	11
28	A Battery Charge Balancing system with reducing inrush high spike current for electric vehicle. , 2014, , .		1
29	Optimal design of Magneto-Rheological damper comparing different configurations by finite element analysis. Journal of Mechanical Science and Technology, 2014, 28, 3667-3677.	1.5	42
30	Novel design of a self powered and self sensing magneto-rheological damper. IOP Conference Series: Materials Science and Engineering, 2013, 53, 012048.	0.6	10
31	Development of a Web-based financial application System. IOP Conference Series: Materials Science and Engineering, 2013, 53, 012080.	0.6	1
32	Comparative data compression techniques and multi-compression results. IOP Conference Series: Materials Science and Engineering, 2013, 53, 012081.	0.6	4
33	Design field controller for level, flow, temperature and networking using YOKOGAWA DCS. IOP Conference Series: Materials Science and Engineering, 2013, 53, 012094.	0.6	3
34	Development of an Advanced Semi-Active Damper Using Smart Fluid. Advanced Materials Research, 0, 939, 615-622.	0.3	8