
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6621956/publications.pdf Version: 2024-02-01

LIKAS VAN ZWIETEN

#	Article	IF	CITATIONS
1	Multifunctional applications of biochar beyond carbon storage. International Materials Reviews, 2022, 67, 150-200.	9.4	245
2	Probing the nature of soil organic matter. Critical Reviews in Environmental Science and Technology, 2022, 52, 4072-4093.	6.6	35
3	Plant growth responses to soil-applied hydrothermally-carbonised waste amendments: a meta-analysis. Plant and Soil, 2022, 472, 1-15.	1.8	9
4	Unraveling microbiomes and functions associated with strategic tillage, stubble, and fertilizer management. Agriculture, Ecosystems and Environment, 2022, 323, 107686.	2.5	8
5	Combined effects of biochar and fertilizer applications on yield: A review and meta-analysis. Science of the Total Environment, 2022, 808, 152073.	3.9	75
6	Responses of soil nutrients and microbial activity to the mill-mud application in a compaction-affected sugarcane field. Soil Research, 2022, 60, 385-398.	0.6	3
7	Sorption of Pb(II) onto biochar is enhanced through co-sorption of dissolved organic matter. Science of the Total Environment, 2022, 825, 153686.	3.9	30
8	Herbicide residues in Australian grain cropping soils at sowing and their relevance to crop growth. Science of the Total Environment, 2022, 833, 155105.	3.9	13
9	Sample preservation methods impact arbuscular mycorrhizal DNA recovery from sugarcane root tissue. Rhizosphere, 2022, 22, 100519.	1.4	2
10	Biochar accelerates soil organic carbon mineralization via rhizodeposit-activated Actinobacteria. Biology and Fertility of Soils, 2022, 58, 565-577.	2.3	22
11	Disentangling carbon stabilization in a Calcisol subsoil amended with iron oxyhydroxides: A dual-13C isotope approach. Soil Biology and Biochemistry, 2022, , 108711.	4.2	2
12	A critical review of biochar-based nitrogen fertilizers and their effects on crop production and the environment. Biochar, 2022, 4, .	6.2	46
13	Towards a better understanding of the role of Fe cycling in soil for carbon stabilization and degradation. , 2022, 1, .		51
14	Ameliorating alkaline dispersive subsoils with organic amendments: Are productivity responses due to nutrition or improved soil structure?. Plant and Soil, 2022, 480, 227-244.	1.8	6
15	The stoichiometric C-Fe ratio regulates glucose mineralization and stabilization via microbial processes. Geoderma, 2021, 383, 114769.	2.3	20
16	Soil type regulates carbon and nitrogen stoichiometry and mineralization following biochar or nitrogen addition. Science of the Total Environment, 2021, 753, 141645.	3.9	28
17	Effects of crabs on greenhouse gas emissions, soil nutrients, and stoichiometry in a subtropical estuarine wetland. Biology and Fertility of Soils, 2021, 57, 131-144.	2.3	11
18	Vertical distributions of organic carbon fractions under paddy and forest soils derived from black shales: Implications for potential of long-term carbon storage. Catena, 2021, 198, 105056.	2.2	15

LUKAS VAN ZWIETEN

#	Article	IF	CITATIONS
19	Priming, stabilization and temperature sensitivity of native SOC is controlled by microbial responses and physicochemical properties of biochar. Soil Biology and Biochemistry, 2021, 154, 108139.	4.2	48
20	Soil organic matter formation is controlled by the chemistry and bioavailability of organic carbon inputs across different land uses. Science of the Total Environment, 2021, 770, 145307.	3.9	25
21	Edaphic variables influence soil bacterial structure under successive fertilization of Paulownia plantation substituting native vegetation. Journal of Soils and Sediments, 2021, 21, 2922.	1.5	6
22	Biochar-based fertilizer decreased while chemical fertilizer increased soil N2O emissions in a subtropical Moso bamboo plantation. Catena, 2021, 202, 105257.	2.2	22
23	Weed Suppression, Biomass and Nitrogen Accumulation in Mixed-Species and Single-Species Cover Crops in a Tropical Sugarcane Fallow. Agriculture (Switzerland), 2021, 11, 640.	1.4	4
24	How biochar works, and when it doesn't: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy, 2021, 13, 1731-1764.	2.5	286
25	Slow Release Brown Coal-Urea Fertilizer Potentially Influences Greenhouse Gas Emissions, Nitrogen Use Efficiency, and Sweet Corn Yield in Oxisol. ACS Agricultural Science and Technology, 2021, 1, 469-478.	1.0	8
26	Abiotic and biotic regulation on carbon mineralization and stabilization in paddy soils along iron oxide gradients. Soil Biology and Biochemistry, 2021, 160, 108312.	4.2	36
27	Arbuscular mycorrhizal fungi and goethite promote carbon sequestration via hyphal-aggregate mineral interactions. Soil Biology and Biochemistry, 2021, 162, 108417.	4.2	31
28	Spatial distribution of plant-available silicon and its controlling factors in paddy fields of China. Geoderma, 2021, 401, 115215.	2.3	16
29	Additive effects of organic and inorganic amendments can significantly improve structural stability of a sodic dispersive subsoil. Geoderma, 2021, 404, 115281.	2.3	13
30	<i>Spartina alterniflora</i> invasion controls organic carbon stocks in coastal marsh and mangrove soils across tropics and subtropics. Global Change Biology, 2021, 27, 1627-1644.	4.2	62
31	A Critical Review of Methods for Analyzing Freshwater Eutrophication. Water (Switzerland), 2021, 13, 225.	1.2	42
32	An effective biochar-based slow-release fertilizer for reducing nitrogen loss in paddy fields. Journal of Soils and Sediments, 2020, 20, 3027-3040.	1.5	58
33	Biochar-based fertilizer: Supercharging root membrane potential and biomass yield of rice. Science of the Total Environment, 2020, 713, 136431.	3.9	78
34	Nutrient stoichiometry and labile carbon content of organic amendments control microbial biomass and carbon-use efficiency in a poorly structured sodic-subsoil. Biology and Fertility of Soils, 2020, 56, 219-233.	2.3	52
35	Wetting-drying cycles during a rice-wheat crop rotation rapidly (im)mobilize recalcitrant soil phosphorus. Journal of Soils and Sediments, 2020, 20, 3921-3930.	1.5	16
36	Phytolith-rich straw application and groundwater table management over 36Âyears affect the soil-plant silicon cycle of a paddy field. Plant and Soil, 2020, 454, 343-358.	1.8	34

#	Article	IF	CITATIONS
37	Contribution of Asian dust to soils in Southeast China estimated with Nd and Pb isotopic compositions. Acta Geochimica, 2020, 39, 911-919.	0.7	0
38	Rusty sink of rhizodeposits and associated keystone microbiomes. Soil Biology and Biochemistry, 2020, 147, 107840.	4.2	73
39	Low seasonal nitrous oxide emissions in tea tree farming systems following nitrogen fertilisation using poultry litter application or green manure legumes. Soil Research, 2020, 58, 238.	0.6	1
40	Shifts in the bacterial community along with root-associated compartments of maize as affected by goethite. Biology and Fertility of Soils, 2020, 56, 1201-1210.	2.3	15
41	Carbon-nitrogen isotope coupling of soil organic matter in a karst region under land use change, Southwest China. Agriculture, Ecosystems and Environment, 2020, 301, 107027.	2.5	108
42	Holocene carbon accumulation in lakes of the current east Asian monsoonal margin: Implications under a changing climate. Science of the Total Environment, 2020, 737, 139723.	3.9	7
43	Biochar increases soil organic carbon, avocado yields and economic return over 4Âyears of cultivation. Science of the Total Environment, 2020, 724, 138153.	3.9	46
44	Soil parent material controls organic matter stocks and retention patterns in subtropical China. Journal of Soils and Sediments, 2020, 20, 2426-2438.	1.5	18
45	A review of carbon isotopes of phytoliths: implications for phytolith-occluded carbon sources. Journal of Soils and Sediments, 2020, 20, 1811-1823.	1.5	6
46	Silicon accumulation controls carbon cycle in wetlands through modifying nutrients stoichiometry and lignin synthesis of Phragmites australis. Environmental and Experimental Botany, 2020, 175, 104058.	2.0	19
47	Priming of soil organic carbon induced by sugarcane residues and its biochar control the source of nitrogen for plant uptake: A dual 13C and 15N isotope three-source-partitioning study. Soil Biology and Biochemistry, 2020, 146, 107792.	4.2	31
48	Balanced nutrient stoichiometry of organic amendments enhances carbon priming in a poorly structured sodic subsoil. Soil Biology and Biochemistry, 2020, 145, 107800.	4.2	26
49	Low pH of a High Carbon Gleysol Contributes to Nitrification Inhibition Resulting in Low N2O Soil Emissions and Limited Effectiveness of Nitrification Inhibitors. Soil Systems, 2020, 4, 75.	1.0	2
50	Assessing plant-available glyphosate in contrasting soils by diffusive gradient in thin-films technique (DGT). Science of the Total Environment, 2019, 646, 735-744.	3.9	11
51	The contribution of Asian dust in the pedogenesis of ultisols in Southeastern China determined by soil grain size. Journal of Soils and Sediments, 2019, 19, 232-240.	1.5	4
52	Phosphorus speciation and bioavailability in diverse biochars. Plant and Soil, 2019, 443, 233-244.	1.8	22
53	Integration and potential nitrogen contributions of green manure inter-row legumes in coppiced tree cropping systems. European Journal of Agronomy, 2019, 103, 47-53.	1.9	13
54	Soilborne glyphosate residue thresholds for wheat seedling metabolite profiles and fungal root endophyte colonisation are lower than for biomass production in a sandy soil. Plant and Soil, 2019, 438, 393-404.	1.8	2

#	Article	IF	CITATIONS
55	Biochar improves diary pasture yields by alleviating P and K constraints with no influence on soil respiration or N2O emissions. Biochar, 2019, 1, 115-126.	6.2	13
56	Soil Microbial Community Structure Shifts Induced by Biochar and Biocharâ€Based Fertilizer Amendment to Karst Calcareous Soil. Soil Science Society of America Journal, 2019, 83, 398-408.	1.2	36
57	Real-time forecasting of pesticide concentrations in soil. Science of the Total Environment, 2019, 663, 709-717.	3.9	10
58	Direct Determination of Glyphosate and its Metabolite AMPA in Soil Using Mixed-Mode Solid-Phase Purification and LC-MS/MS Determination on a Hypercarb Column. Journal of AOAC INTERNATIONAL, 2019, 102, 952-965.	0.7	10
59	Wheat straw biochar application increases ammonia volatilization from an urban compacted soil giving a short-term reduction in fertilizer nitrogen use efficiency. Journal of Soils and Sediments, 2019, 19, 1624-1631.	1.5	28
60	Pinto peanut cover crop nitrogen contributions and potential to mitigate nitrous oxide emissions in subtropical coffee plantations. Science of the Total Environment, 2019, 656, 108-117.	3.9	14
61	Influence of growth stage and seed nitrogen on B values and potential contributions to error in estimating biological N2 fixation using the 15N natural abundance method. Plant and Soil, 2018, 425, 389-399.	1.8	15
62	The effects of short term, long term and reapplication of biochar on soil bacteria. Science of the Total Environment, 2018, 636, 142-151.	3.9	105
63	Subsoil application of compost improved sugarcane yield through enhanced supply and cycling of soil labile organic carbon and nitrogen in an acidic soil at tropical Australia. Soil and Tillage Research, 2018, 180, 73-81.	2.6	33
64	The interactive effects of dolomite application and straw incorporation on soil N ₂ O emissions. European Journal of Soil Science, 2018, 69, 502-511.	1.8	29
65	Effect of glyphosate and a commercial formulation on soil functionality assessed by substrate induced respiration and enzyme activity. European Journal of Soil Biology, 2018, 85, 64-72.	1.4	17
66	A meta-analysis and critical evaluation of influencing factors on soil carbon priming following biochar amendment. Journal of Soils and Sediments, 2018, 18, 1507-1517.	1.5	70
67	The accumulation of rhizodeposits in organo-mineral fractions promoted biochar-induced negative priming of native soil organic carbon in Ferralsol. Soil Biology and Biochemistry, 2018, 118, 91-96.	4.2	23
68	Crop-season and residual effects of sequentially applied mineral enhanced biochar and N fertiliser on crop yield, soil chemistry and microbial communities. Agriculture, Ecosystems and Environment, 2018, 255, 52-61.	2.5	36
69	Phytolith accumulation in broadleaf and conifer forests of northern China: Implications for phytolith carbon sequestration. Geoderma, 2018, 312, 36-44.	2.3	47
70	Phytotoxicity of soilborne glyphosate residues is influenced by the method of phosphorus fertiliser application. Plant and Soil, 2018, 422, 455-465.	1.8	17
71	Biochar carbon dynamics in physically separated fractions and microbial use efficiency in contrasting soils under temperate pastures. Soil Biology and Biochemistry, 2018, 116, 399-409.	4.2	35
72	A re-evaluation of the agronomic effectiveness of the nitrification inhibitors DCD and DMPP and the urease inhibitor NBPT. Agriculture, Ecosystems and Environment, 2018, 252, 69-73.	2.5	81

#	Article	IF	CITATIONS
73	A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. Journal of Environmental Management, 2018, 228, 429-440.	3.8	250
74	Effect of clay and iron sulphate on volatile and water-extractable organic compounds in bamboo biochars. Journal of Analytical and Applied Pyrolysis, 2018, 133, 22-29.	2.6	12
75	No evidence for higher agronomic N use efficiency or lower nitrous oxide emissions from enhanced efficiency fertilisers in aerobic subtropical rice. Field Crops Research, 2018, 225, 47-54.	2.3	21
76	Colonisation dynamics of arbuscular mycorrhizal fungi and dark septate endophytes in the sugarcane crop cycle. Rhizosphere, 2018, 7, 18-26.	1.4	8
77	The long-term role of organic amendments in addressing soil constraints to production. Nutrient Cycling in Agroecosystems, 2018, 111, 99-102.	1.1	26
78	Minor effects of herbicides on microbial activity in agricultural soils are detected by N-transformation but not enzyme activity assays. European Journal of Soil Biology, 2018, 87, 72-79.	1.4	12
79	Short-term biochar manipulation of microbial nitrogen transformation in wheat rhizosphere of a metal contaminated Inceptisol from North China plain. Science of the Total Environment, 2018, 640-641, 1287-1296.	3.9	26
80	Sugarcane bagasse biochars impact respiration and greenhouse gas emissions from a latosol. Journal of Soils and Sediments, 2017, 17, 632-640.	1.5	45
81	Biochar lowers ammonia emission and improves nitrogen retention in poultry litter composting. Waste Management, 2017, 61, 129-137.	3.7	155
82	Changes in microbial biomass and the metabolic quotient with biochar addition to agricultural soils: A Meta-analysis. Agriculture, Ecosystems and Environment, 2017, 239, 80-89.	2.5	143
83	Influence of ameliorating soil acidity with dolomite on the priming of soil C content and CO2 emission. Environmental Science and Pollution Research, 2017, 24, 9241-9250.	2.7	17
84	Nanoscale analyses of the surface structure and composition of biochars extracted from field trials or after co-composting using advanced analytical electron microscopy. Geoderma, 2017, 294, 70-79.	2.3	84
85	Biochar built soil carbon over a decade by stabilizing rhizodeposits. Nature Climate Change, 2017, 7, 371-376.	8.1	232
86	The accumulation of phytolith-occluded carbon in soils of different grasslands. Journal of Soils and Sediments, 2017, 17, 2420-2427.	1.5	25
87	Biochar increases nitrogen retention and lowers greenhouse gas emissions when added to composting poultry litter. Waste Management, 2017, 61, 138-149.	3.7	119
88	A communal catalogue reveals Earth's multiscale microbial diversity. Nature, 2017, 551, 457-463.	13.7	1,942
89	Short-term effects of organo-mineral biochar and organic fertilisers on nitrogen cycling, plant photosynthesis, and nitrogen use efficiency. Journal of Soils and Sediments, 2017, 17, 2763-2774.	1.5	39
90	Temperature sensitivity and priming of organic matter with different stabilities in a Vertisol with aged biochar. Soil Biology and Biochemistry, 2017, 115, 346-356.	4.2	44

#	Article	IF	CITATIONS
91	Impact of climate and lithology on soil phytolith-occluded carbon accumulation in eastern China. Journal of Soils and Sediments, 2017, 17, 481-490.	1.5	15
92	The nitrification inhibitor DMPP applied to subtropical rice has an inconsistent effect on nitrous oxide emissions. Soil Research, 2017, 55, 547.	0.6	13
93	Biochar and compost soil amendments affect soil carbon and greenhouse gas emissions. Acta Horticulturae, 2017, , 225-232.	0.1	2
94	Wood base biochar alters inorganic N. Acta Horticulturae, 2016, , 151-154.	0.1	8
95	Nitrification (DMPP) and urease (NBPT) inhibitors had no effect on pasture yield, nitrous oxide emissions, or nitrate leaching under irrigation in a hot-dry climate. Soil Research, 2016, 54, 675.	0.6	49
96	Impact of Herbicides on Soil Biology and Function. Advances in Agronomy, 2016, , 133-220.	2.4	98
97	Application of woody biochar and woody mulch to mitigate nitrous oxide emissions from a poultry litter-amended soil in the subtropics. Agriculture, Ecosystems and Environment, 2016, 228, 1-8.	2.5	13
98	Is current biochar research addressing global soil constraints for sustainable agriculture?. Agriculture, Ecosystems and Environment, 2016, 226, 25-32.	2.5	96
99	Designing advanced biochar products for maximizing greenhouse gas mitigation potential. Critical Reviews in Environmental Science and Technology, 2016, 46, 1367-1401.	6.6	86
100	Removal of phosphorus in residues of legume or cereal plants determines growth of subsequently planted wheat in a high phosphorus fixing soil. Biology and Fertility of Soils, 2016, 52, 1085-1092.	2.3	7
101	Delayed permanent water rice production systems do not improve the recovery of 15 N-urea compared to continuously flooded systems. European Journal of Agronomy, 2016, 81, 46-51.	1.9	8
102	Faba bean is less susceptible to fertiliser N impacts on biological N2 fixation than chickpea in monoculture and intercropping systems. Biology and Fertility of Soils, 2016, 52, 271-276.	2.3	29
103	Impact of glyphosate on soil microbial biomass and respiration: A meta-analysis. Soil Biology and Biochemistry, 2016, 92, 50-57.	4.2	119
104	Lowering N2O emissions from soils using eucalypt biochar: the importance of redox reactions. Scientific Reports, 2015, 5, 16773.	1.6	61
105	The Electrochemical Properties of Biochars and How They Affect Soil Redox Properties and Processes. Agronomy, 2015, 5, 322-340.	1.3	122
106	The molar H:Corg ratio of biochar is a key factor in mitigating N2O emissions from soil. Agriculture, Ecosystems and Environment, 2015, 202, 135-138.	2.5	164
107	Enhanced biological N2 fixation and yield of faba bean (Vicia faba L.) in an acid soil following biochar addition: dissection of causal mechanisms. Plant and Soil, 2015, 395, 7-20.	1.8	97
108	Behaviour of estrogenic endocrine-disrupting chemicals in permeable carbonate sands. Environmental Science and Pollution Research, 2015, 22, 11340-11348.	2.7	7

#	Article	IF	CITATIONS
109	Plant-biochar interactions drive the negative priming of soil organic carbon in an annual ryegrass field system. Soil Biology and Biochemistry, 2015, 90, 111-121.	4.2	75
110	Feeding Biochar to Cows: An Innovative Solution for Improving Soil Fertility and Farm Productivity. Pedosphere, 2015, 25, 666-679.	2.1	74
111	Developing More Effective Enhanced Biochar Fertilisers for Improvement of Pepper Yield and Quality. Pedosphere, 2015, 25, 703-712.	2.1	58
112	Wood biochar increases nitrogen retention in field settings mainly through abiotic processes. Soil Biology and Biochemistry, 2015, 90, 232-240.	4.2	123
113	Soil and foliar nutrient and nitrogen isotope composition (δ15N) at 5Âyears after poultry litter and green waste biochar amendment in a macadamia orchard. Environmental Science and Pollution Research, 2015, 22, 3803-3809.	2.7	60
114	In Situ Persistence and Migration of Biochar Carbon and Its Impact on Native Carbon Emission in Contrasting Soils under Managed Temperate Pastures. PLoS ONE, 2015, 10, e0141560.	1.1	45
115	Opportunities and constraints for biochar technology in Australian agriculture: looking beyond carbon sequestration. Soil Research, 2014, 52, 739.	0.6	49
116	Oil mallee biochar improves soil structural properties—A study with x-ray micro-CT. Agriculture, Ecosystems and Environment, 2014, 191, 142-149.	2.5	94
117	An incubation study investigating the mechanisms that impact N2O flux from soil following biochar application. Agriculture, Ecosystems and Environment, 2014, 191, 53-62.	2.5	170
118	Comparative analysis of the microbial communities in agricultural soil amended with enhanced biochars or traditional fertilisers. Agriculture, Ecosystems and Environment, 2014, 191, 73-82.	2.5	171
119	Plant growth responses to biochar addition: an Australian soils perspective. Biology and Fertility of Soils, 2014, 50, 1035-1045.	2.3	102
120	Biochar's role in mitigating soil nitrous oxide emissions: A review and meta-analysis. Agriculture, Ecosystems and Environment, 2014, 191, 5-16.	2.5	746
121	Contrasting effects of manure and green waste biochars on the properties of an acidic ferralsol and productivity of a subtropical pasture. Plant and Soil, 2013, 366, 213-227.	1.8	121
122	Improving the statistical preparation for measuring soil N2O flux by closed chamber. Science of the Total Environment, 2013, 465, 166-172.	3.9	20
123	Pyrolysing poultry litter reduces N2O and CO2 fluxes. Science of the Total Environment, 2013, 465, 279-287.	3.9	57
124	Biochar: A Coproduct to Bioenergy from Slow-Pyrolysis Technology. , 2013, , 97-117.		6
125	Chemical and structural analysis of enhanced biochars: Thermally treated mixtures of biochar, chicken litter, clay and minerals. Chemosphere, 2013, 91, 35-40.	4.2	61

126 Studying the Role of Biochar using Isotopic Tracing Techniques. , 2013, , 142-172.

3

#	Article	IF	CITATIONS
127	Phytoremediation of an arsenic-contaminated site using Pteris vittata L. and Pityrogramma calomelanos var. austroamericana: a long-term study. Environmental Science and Pollution Research, 2012, 19, 3506-3515.	2.7	76
128	Estrogen mediated effects in the Sydney rock oyster, Saccostrea glomerata, following field exposures to sewage effluent containing estrogenic compounds and activity. Aquatic Toxicology, 2012, 120-121, 99-108.	1.9	28
129	Marked changes in herbicide sorption–desorption upon ageing of biochars in soil. Journal of Hazardous Materials, 2012, 231-232, 70-78.	6.5	200
130	Biochar as a Geoengineering Climate Solution: Hazard Identification and Risk Management. Critical Reviews in Environmental Science and Technology, 2012, 42, 225-250.	6.6	47
131	Utilization of Biochar in Sugarcane and Sugar-Industry Management. Sugar Tech, 2012, 14, 321-326.	0.9	23
132	ls sustainability certification for biochar the answer to environmental risks?. Pesquisa Agropecuaria Brasileira, 2012, 47, 637-648.	0.9	20
133	Nanoscale organo-mineral reactions of biochars in ferrosol: an investigation using microscopy. Plant and Soil, 2012, 357, 369-380.	1.8	209
134	Release of native and mass labelled PCDD/PCDF from soil heated to simulate bushfires. Environmental Pollution, 2012, 166, 10-16.	3.7	10
135	Release of PCDD/PCDF to air and land during open burning of sugarcane and forest litter over soil fortified with mass labelled PCDD/PCDF. Atmospheric Environment, 2012, 59, 125-130.	1.9	9
136	Biochar Application to Soil. Advances in Agronomy, 2011, , 103-143.	2.4	450
137	Terra Preta Australis: Reassessing the carbon storage capacity of temperate soils. Agriculture, Ecosystems and Environment, 2011, 140, 137-147.	2.5	75
138	Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia. Plant and Soil, 2011, 345, 47-58.	1.8	193
139	Phytoremediation Potential of <i>Pityrogramma Calomelanos</i> Var. <i>Austroamericana</i> and <i>Pteris Vittata</i> L. Grown at a Highly Variable Arsenic Contaminated Site. International Journal of Phytoremediation, 2011, 13, 912-932.	1.7	26
140	Biochar in Soil for Climate Change Mitigation and Adaptation. Soil Biology, 2011, , 345-368.	0.6	19
141	Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 2010, 327, 235-246.	1.8	1,376
142	Retention capacity of biochar-amended New Zealand dairy farm soil for an estrogenic steroid hormone and its primary metabolite. Soil Research, 2010, 48, 648.	0.6	55
143	A glasshouse study on the interaction of low mineral ash biochar with nitrogen in a sandy soil. Soil Research, 2010, 48, 569.	0.6	167
144	Influence of biochars on flux of N2O and CO2 from Ferrosol. Soil Research, 2010, 48, 555.	0.6	337

#	Article	IF	CITATIONS
145	An investigation into the reactions of biochar in soil. Soil Research, 2010, 48, 501.	0.6	840
146	Effects of 4-nonylphenol and 17α-ethynylestradiol exposure in the Sydney rock oyster, Saccostrea glomerata: Vitellogenin induction and gonadal development. Aquatic Toxicology, 2008, 88, 39-47.	1.9	68
147	Bioavailable DDT residues in sediments: Laboratory assessment of ageing effects using semi-permeable membrane devices. Environmental Pollution, 2008, 153, 110-118.	3.7	16
148	Using poultry litter biochars as soil amendments. Soil Research, 2008, 46, 437.	0.6	814
149	Optimisation of analytical method for estrogen in surface water and primary risk assessment in South Creek. International Journal of Water, 2007, 3, 334.	0.1	5
150	Agronomic values of greenwaste biochar as a soil amendment. Soil Research, 2007, 45, 629.	0.6	1,404
151	Enhancing cell survival of atrazine degrading Rhodococcus erythropolis NI86/21 cells encapsulated in alginate beads. Journal of Applied Microbiology, 2007, 102, 212-220.	1.4	17
152	The characteristics of rhizosphere microbes associated with plants in arsenic-contaminated soils from cattle dip sites. Science of the Total Environment, 2007, 378, 331-342.	3.9	43
153	Impact of agricultural inputs on soil organisms—a review. Soil Research, 2006, 44, 379.	0.6	374
154	Impacts of management on soil biota in Vertosols supporting the broadacre grains industry in northern Australia. Soil Research, 2006, 44, 433.	0.6	39
155	Atrazine degradation by encapsulated Rhodococcus erythropolis NI86/21. Journal of Applied Microbiology, 2005, 99, 767-775.	1.4	19
156	SOIL NEMATODES INDICATE SOIL HEALTH IN MACADAMIA ORCHARDS. Acta Horticulturae, 2005, , 207-211.	0.1	0
157	Influence of copper fungicide residues on occurrence of earthworms in avocado orchard soils. Science of the Total Environment, 2004, 329, 29-41.	3.9	96
158	Influence of arsenic co-contamination on DDT breakdown and microbial activity. Environmental Pollution, 2003, 124, 331-339.	3.7	58
159	The potential impact of long-term copper fungicide usage on soil microbial biomass and microbial activity in an avocado orchard. Soil Research, 2002, 40, 749.	0.6	63
160	DETERMINATION OF DDT AND ITS METABOLITES IN CATTLE DIP SOIL AVAILABLE IN AQUEOUS PHASE AFTER REMEDIATION. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2001, 36, 501-516.	0.7	2
161	Rapid Degradation of Atrazine by Rhodococcus sp. NI86/21 and by an Atrazine-Perfused Soil. Journal of Agricultural and Food Chemistry, 1995, 43, 1377-1382.	2.4	24
162	Expression of the 2,4-D degrading plasmid pJP4 ofAlcaligenes eutrophus inRhizobium trifolii. Acta Biotechnologica, 1994, 14, 119-129.	1.0	9

#	Article	IF	CITATIONS
163	Regional Considerations for Targeted Use of Biochar in Agriculture and Remediation in Australia. SSSA Special Publication Series, 0, , 445-474.	0.2	2