
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6621845/publications.pdf Version: 2024-02-01

KENDO'HALLODAN

#	Article	IF	CITATIONS
1	Intrarenal pelvic bradykinin-induced sympathoexcitatory reno-renal reflex is attenuated in rats exposed to chronic intermittent hypoxia. Journal of Hypertension, 2022, 40, 46-64.	0.5	2
2	Keep in touch: Nodal connectivity in the control of breathing and blood pressure. Experimental Physiology, 2022, 107, 99-100.	2.0	0
3	The ups and downs of intermittent hypoxia as a therapy for ventilatory insufficiency. Journal of Physiology, 2022, 600, 2275-2276.	2.9	О
4	Clever approaches to intriguing questions: halcyon days of carotid body research by one of the best. Journal of Physiology, 2022, 600, 3385-3386.	2.9	0
5	A shock to the system: neurostimulation therapy for opioidâ€induced respiratory depression. Journal of Physiology, 2022, 600, 2833-2834.	2.9	Ο
6	Renal Sympathetic Nerve Activity Responses to Hypoxia and Hypercapnia in Rats Exposed to Chronic Intermittent Hypoxia. FASEB Journal, 2022, 36, .	0.5	0
7	Breathing in Duchenne muscular dystrophy: translation to therapy. Journal of Physiology, 2022, 600, 3465-3482.	2.9	9
8	NADPH oxidase 2 is necessary for chronic intermittent hypoxiaâ€induced sternohyoid muscle weakness in adult male mice. Experimental Physiology, 2022, 107, 946-964.	2.0	3
9	Variation within the visually evoked neurovascular coupling response of the posterior cerebral artery is not influenced by age or sex. Journal of Applied Physiology, 2022, 133, 335-348.	2.5	6
10	Cardiorespiratory hysteresis during incremental highâ€altitude ascent–descent quantifies the magnitude of ventilatory acclimatization. Experimental Physiology, 2021, 106, 139-150.	2.0	10
11	Chronic intermittent hypoxia impairs diuretic and natriuretic responses to volume expansion in rats with preserved low-pressure baroreflex control of the kidney. American Journal of Physiology - Renal Physiology, 2021, 320, F1-F16.	2.7	4
12	Ascending the gut–brain axis: does the microbiome affect acclimatization to high altitude?. Experimental Physiology, 2021, 106, 583-584.	2.0	0
13	Time course and magnitude of ventilatory and renal acid-base acclimatization following rapid ascent to and residence at 3,800 m over nine days. Journal of Applied Physiology, 2021, 130, 1705-1715.	2.5	12
14	Re-Evaluating the Oxidative Phenotype: Can Endurance Exercise Save the Western World?. Antioxidants, 2021, 10, 609.	5.1	9
15	Contribution of extraâ€diaphragmatic inspiratory muscles to peak inspiratory pressure in wildâ€ŧype and dystrophic (mdx) mice. FASEB Journal, 2021, 35, .	0.5	2
16	Renal Sympathetic Nerve Activity and Heart Rate Responses to Renal Pelvic Infusion of Bradykinin and Capsaicin in Rats Exposed to Intermittent Hypoxia. FASEB Journal, 2021, 35, .	0.5	0
17	The effects of acute incremental hypocapnia on the magnitude of neurovascular coupling in healthy participants. Physiological Reports, 2021, 9, e14952.	1.7	2
18	One step closer to pharmacotherapy for sleep apnoea. Journal of Physiology, 2021, 599, 4015-4016.	2.9	2

#	Article	IF	CITATIONS
19	Endogenous medullary raphé hydrogen sulphide facilitates the ventilatory response to hypercapnia. Experimental Physiology, 2021, 106, 1865-1866.	2.0	0
20	Microbiota and sleep: awakening the gut feeling. Trends in Molecular Medicine, 2021, 27, 935-945.	6.7	65
21	The role of NADPH oxidase in chronic intermittent hypoxia-induced respiratory plasticity in adult male mice. Respiratory Physiology and Neurobiology, 2021, 292, 103713.	1.6	5
22	Targeting the Toll-like receptor pathway as a therapeutic strategy for neonatal infection. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 321, R879-R902.	1.8	5
23	Muscling in on neurorehabilitative strategies to counter respiratory motor dysfunction in cervical spinal cord injury. Journal of Physiology, 2021, 599, 1009-1010.	2.9	1
24	Diaphragm fatigue: Similarities and differences between sexes. Journal of Physiology, 2021, 599, 1023-1024.	2.9	2
25	Epigenetic silencing by earlyâ€life hypoxic stress programmes respiratory motor control. Experimental Physiology, 2020, 105, 3-4.	2.0	Ο
26	The impact of preterm adversity on cardiorespiratory function. Experimental Physiology, 2020, 105, 17-43.	2.0	6
27	Pontine noradrenergic neurons facilitate pulmonary ventilation during hypercapnic stress: fight or flight – and breathe!. Experimental Physiology, 2020, 105, 5-6.	2.0	Ο
28	Carbonic anhydrase inhibition and chemoreflex control of breathing: A litmus test for methazolamide as a viable alternative to acetazolamide. Experimental Physiology, 2020, 105, 230-231.	2.0	1
29	Corticomotor control of airway calibre in obstructive sleep apnoea syndrome. Experimental Physiology, 2020, 105, 234-235.	2.0	Ο
30	Bugs, breathing and blood pressure: microbiota–gut–brain axis signalling in cardiorespiratory control in health and disease. Journal of Physiology, 2020, 598, 4159-4179.	2.9	18
31	Renal Physiological Adaptation to High Altitude: A Systematic Review. Frontiers in Physiology, 2020, 11, 756.	2.8	17
32	Prebiotic administration modulates gut microbiota and faecal short-chain fatty acid concentrations but does not prevent chronic intermittent hypoxia-induced apnoea and hypertension in adult rats. EBioMedicine, 2020, 59, 102968.	6.1	16
33	Simulating the space station: a launch pad for new explorations in integrative physiology. Journal of Physiology, 2020, 598, 2285-2286.	2.9	0
34	Mind the gap: widening the demographic to establish new norms in human physiology. Journal of Physiology, 2020, 598, 3045-3047.	2.9	10
35	Ventilatory acclimatization to hypoxia: Time to express a critical central message. Journal of Physiology, 2020, 598, 1795-1796.	2.9	0
36	Reply: The two faces of active expiration: a case of mistaken identity!. Experimental Physiology, 2020, 105, 395-396.	2.0	0

#	Article	IF	CITATIONS
37	A tongueâ€ŧwister to translation? Increased complexity of genioglossus movement during wakefulness in persons with obstructive sleep apnoea. Journal of Physiology, 2020, 598, 435-436.	2.9	0
38	The carotid bodies exercise control over active expiration but not peak performance during highâ€intensity treadmill running. Experimental Physiology, 2020, 105, 1214-1215.	2.0	0
39	Unraveling the Role of Interleukin-11 in Renal and Cardiac Fibrosis in Malignant Hypertension. American Journal of Hypertension, 2020, 33, 303-304.	2.0	0
40	Progesterone is a promising therapeutic for the prevention of apnoea. Experimental Physiology, 2020, 105, 928-929.	2.0	0
41	Diaphragm remodelling following cervical spinal cord injury: Can intrinsic neural plasticity be harnessed to improve respiratory motor function?. Journal of Physiology, 2020, 598, 2049-2050.	2.9	0
42	Stimulating ideas for disorders of breathing, speech and swallowing. Journal of Physiology, 2020, 598, 5007-5007.	2.9	0
43	Swallow-breathing coordination during incremental ascent to altitude. Respiratory Physiology and Neurobiology, 2019, 265, 121-126.	1.6	7
44	Breathing with neuromuscular disease: Does compensatory plasticity in the motor drive to breathe offer a potential therapeutic target in muscular dystrophy?. Respiratory Physiology and Neurobiology, 2019, 265, 49-54.	1.6	5
45	No evidence in support of a prodromal respiratory control signature in the TgF344-AD rat model of Alzheimer's disease. Respiratory Physiology and Neurobiology, 2019, 265, 55-67.	1.6	4
46	Cardiovascular sequelae of the sleep apnoea syndrome: Sex, stress and therapeutic strategies. Acta Physiologica, 2019, 225, e13170.	3.8	0
47	Opioids for the relief of acute respiratory distress syndrome: Endomorphins are the μ kids on the block!. Experimental Physiology, 2019, 104, 1445-1446.	2.0	1
48	Reply from David P. Burns, Eric F. Lucking and Ken D. O'Halloran: Auxiliary compensation for diaphragm dysfunction in dystrophic disease. Journal of Physiology, 2019, 597, 4103-4105.	2.9	2
49	Is alkalosis the dominant factor in hypoxiaâ€induced cognitive dysfunction?. Experimental Physiology, 2019, 104, 1443-1444.	2.0	7
50	Working out the energetic cost of breathing during exercise. Experimental Physiology, 2019, 104, 1593-1594.	2.0	0
51	Brainstem adrenomedullin facilitates intermittent hypoxiaâ€induced hypertension: A sympathetic story of a selfish brain. Experimental Physiology, 2019, 104, 1589-1590.	2.0	0
52	Motor unit behaviour of the ageing human diaphragm: midâ€life crisis for the inspiratory pump?. Journal of Physiology, 2019, 597, 5043-5044.	2.9	0
53	Chronic intermittent hypoxiaâ€induced hypertension: An expired hypothesis laid to rest?. Experimental Physiology, 2019, 104, 1327-1328.	2.0	3
54	Is Aberrant Reno-Renal Reflex Control of Blood Pressure a Contributor to Chronic Intermittent Hypoxia-Induced Hypertension?. Frontiers in Physiology, 2019, 10, 465.	2.8	14

#	Article	IF	CITATIONS
55	Diaphragm muscle performance in ageing: A new perspective on an old story. Experimental Physiology, 2019, 104, 993-994.	2.0	2
56	Cortical control of upper airway calibre: It's the thought that counts!. Experimental Physiology, 2019, 104, 789-790.	2.0	0
57	Cycle ergometer training enhances plasma interleukin-10 in multiple sclerosis. Neurological Sciences, 2019, 40, 1933-1936.	1.9	3
58	Peripheral and central respiratory system pathology in a mouse model of Parkinson's disease: A prodromal signature of clinical relevance?. Experimental Physiology, 2019, 104, 617-618.	2.0	1
59	Manipulation of gut microbiota blunts the ventilatory response to hypercapnia in adult rats. EBioMedicine, 2019, 44, 618-638.	6.1	37
60	ls nonâ€normalized chest wall electromyogram activity a reliable index of respiratory neural drive? On the surface – yes!. Experimental Physiology, 2019, 104, 621-622.	2.0	0
61	N-acetylcysteine Decreases Fibrosis and Increases Force-Generating Capacity of mdx Diaphragm. Antioxidants, 2019, 8, 581.	5.1	23
62	Blood flow to limb muscles during submaximal dynamic exercise with resistive breathing: Use it or lose it?. Experimental Physiology, 2019, 104, 165-167.	2.0	1
63	Inspiratory pressureâ€generating capacity is preserved during ventilatory and nonâ€ventilatory behaviours in young dystrophic mdx mice despite profound diaphragm muscle weakness. Journal of Physiology, 2019, 597, 831-848.	2.9	19
64	Renal cortical oxygen tension is decreased following exposure to long-term but not short-term intermittent hypoxia in the rat. American Journal of Physiology - Renal Physiology, 2019, 316, F635-F645.	2.7	14
65	Role of NADPH oxidase in chronic intermittent hypoxiaâ€induced respiratory dysfunction: Insights from pharmacological and transgenic approaches. FASEB Journal, 2019, 33, 843.6.	0.5	0
66	Nâ€Acetyl cysteine improves dystrophic (mdx) mouse diaphragm muscle quality and strength. FASEB Journal, 2019, 33, 843.12.	0.5	1
67	Neuroimmune modulation of cardiorespiratory responses to acute severe hypoxia. Experimental Physiology, 2018, 103, 781-782.	2.0	0
68	Plasma Nâ€acylethanolamine and endocannabinoid levels in burning mouth syndrome: Potential role in disease pathogenesis. Journal of Oral Pathology and Medicine, 2018, 47, 440-442.	2.7	13
69	Chronic intermittent hypoxia and renovascular hypertension: A case of one plus one equals oneâ€half!. Experimental Physiology, 2018, 103, 433-434.	2.0	0
70	Sympathetic vasomotor activity during dynamic exercise with resistive breathing: Sex differences and the nerve to show it!. Experimental Physiology, 2018, 103, 435-436.	2.0	0
71	Impact of short-term cycle ergometer training on quality of life, cognition and depressive symptomatology in multiple sclerosis patients: a pilot study. Neurological Sciences, 2018, 39, 461-469.	1.9	21
72	Antioxidant therapy for muscular dystrophy: caveat lector!. Journal of Physiology, 2018, 596, 737-738.	2.9	3

#	Article	IF	CITATIONS
73	Sleep awakens active expiration. Journal of Physiology, 2018, 596, 2947-2948.	2.9	2
74	Pharmacotherapies for apnoea of prematurity: time to pause and consider targeted sexâ€specific strategies?. Experimental Physiology, 2018, 103, 170-171.	2.0	1
75	Plasma <scp>IL</scp> â€8 signature correlates with pain and depressive symptomatology in patients with burning mouth syndrome: Results from a pilot study. Journal of Oral Pathology and Medicine, 2018, 47, 158-165.	2.7	33
76	Chronic intermittent hypoxia disrupts cardiorespiratory homeostasis and gut microbiota composition in adult male guinea-pigs. EBioMedicine, 2018, 38, 191-205.	6.1	61
77	Genioglossus activation during maximal sniff manoeuvres: Is upper airway function relevant in the clinical assessment of inspiratory and expiratory muscle strength?. Experimental Physiology, 2018, 103, 1577-1578.	2.0	0
78	Neurovascular Coupling Remains Intact During Incremental Ascent to High Altitude (4240 m) in Acclimatized Healthy Volunteers. Frontiers in Physiology, 2018, 9, 1691.	2.8	13
79	Renal reactivity: acidâ€base compensation during incremental ascent to high altitude. Journal of Physiology, 2018, 596, 6191-6203.	2.9	37
80	What Is the Point of the Peak? Assessing Steady-State Respiratory Chemoreflex Drive in High Altitude Field Studies. Advances in Experimental Medicine and Biology, 2018, 1071, 13-23.	1.6	6
81	Purinergic modulation of chemosensory drive to breathe from the lateral hypothalamus/perifornical area depends upon sleep–wake and light–dark phases. Experimental Physiology, 2018, 103, 1575-1576.	2.0	0
82	Recovery of respiratory function in <i>mdx</i> mice coâ€treated with neutralizing interleukinâ€6 receptor antibodies and urocortinâ€2. Journal of Physiology, 2018, 596, 5175-5197.	2.9	20
83	Diaphragm Muscle Weakness Following Acute Sustained Hypoxic Stress in the Mouse Is Prevented by Pretreatment with N-Acetyl Cysteine. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-19.	4.0	11
84	Caffeine therapy for apnoea of prematurity: Wake up to the fact that sex matters. Experimental Physiology, 2018, 103, 1294-1295.	2.0	3
85	Diaphragm plasticity in aging and disease: therapies for muscle weakness go from strength to strength. Journal of Applied Physiology, 2018, 125, 243-253.	2.5	22
86	Extreme pregnancy: maternal physical activity at Everest Base Camp. Journal of Applied Physiology, 2018, 125, 580-585.	2.5	5
87	Brainstem network pathology and impaired respiratory drive as successive signatures in a rat model of Parkinson's disease. Experimental Physiology, 2018, 103, 1300-1301.	2.0	0
88	The shape of things to come: Early life stress stunts brainstem microglia, with lasting implications for cardiorespiratory control and plasticity. Experimental Physiology, 2018, 103, 1183-1184.	2.0	0
89	Serotonergic immunoreactivity in the brainstem and spinal cord of <i>mdx</i> mice. FASEB Journal, 2018, 32, 625.6.	0.5	0
90	Three days of chronic intermittent hypoxia is sufficient to induce β 1 â€adrenoceptor dependent increases in left ventricular contractility. FASEB Journal, 2018, 32, 727.5.	0.5	0

#	Article	IF	CITATIONS
91	The Neurovascular Coupling Response Remains Intact During Incremental Ascent to High Altitude (4370m) in Acclimatized Healthy Volunteers. FASEB Journal, 2018, 32, .	0.5	0
92	NADPH oxidase 2 knockout prevents chronic intermittent hypoxia induced sternohyoid muscle weakness in adult male mice. FASEB Journal, 2018, 32, 727.4.	0.5	0
93	Aspects of Respiratory Control in the Dystrophinâ€deficient mdx Mouse. FASEB Journal, 2018, 32, 743.14.	0.5	Ο
94	Microbiota and cardiorespiratory control: Chronic intermittent hypoxia related cardiorespiratory dysfunction in rat. FASEB Journal, 2018, 32, 727.2.	0.5	0
95	Combined XILâ€6R and urocortinâ€2 treatment restores <i>MDX</i> diaphragm muscle force. Muscle and Nerve, 2017, 56, E134-E140.	2.2	7
96	A Randomized Controlled Trial of End-Tidal Carbon Dioxide Detection of Preterm Infants in the Delivery Room. Journal of Pediatrics, 2017, 182, 74-78.e2.	1.8	26
97	Sensorimotor control of breathing in the <i>mdx</i> mouse model of Duchenne muscular dystrophy. Journal of Physiology, 2017, 595, 6653-6672.	2.9	31
98	High adventure shunts old notions of pulmonary vascular control during hypoxic exercise: contrasting views that might just burst your bubble!. Experimental Physiology, 2017, 102, 617-618.	2.0	0
99	Restoration of pharyngeal dilator muscle force in dystrophinâ€deficient (<i>mdx</i>) mice following coâ€treatment with neutralizing interleukinâ€6 receptor antibodies and urocortin 2. Experimental Physiology, 2017, 102, 1177-1193.	2.0	11
100	Resistive breathing and respiratory muscle fatigue: a load of concern just expired!. Experimental Physiology, 2017, 102, 1090-1091.	2.0	0
101	Capnography monitoring during dental conscious sedation. Oral Surgery, 2017, 10, 131-136.	0.2	Ο
102	Sex, stress and sleep apnoea: Decreased susceptibility to upper airway muscle dysfunction following intermittent hypoxia in females. Respiratory Physiology and Neurobiology, 2017, 245, 76-82.	1.6	21
103	Microstream capnography during conscious sedation with midazolam for oral surgery: a randomised controlled trial. BDJ Open, 2017, 3, 17019.	2.1	3
104	Tempol Supplementation Restores Diaphragm Force and Metabolic Enzyme Activities in mdx Mice. Antioxidants, 2017, 6, 101.	5.1	19
105	Squamous Papilloma Causing Airway Obstruction During Conscious Sedation. Anesthesia Progress, 2017, 64, 168-170.	0.5	2
106	Respiratory muscle dysfunction in animal models of hypoxic disease: antioxidant therapy goes from strength to strength. Hypoxia (Auckland, N Z), 2017, Volume 5, 75-84.	1.9	7
107	What's new in Capnography Monitoring for Dental Conscious Sedation: A Clinical Review. SAAD Digest, 2017, 33, 3-6.	0.6	0
108	Early Life Exposure to Chronic Intermittent Hypoxia Primes Increased Susceptibility to Hypoxia-Induced Weakness in Rat Sternohyoid Muscle during Adulthood. Frontiers in Physiology, 2016, 7, 69.	2.8	8

#	Article	IF	CITATIONS
109	Impact of Exercise on Innate Immunity in Multiple Sclerosis Progression and Symptomatology. Frontiers in Physiology, 2016, 7, 194.	2.8	25
110	Effects of Gestational and Postnatal Exposure to Chronic Intermittent Hypoxia on Diaphragm Muscle Contractile Function in the Rat. Frontiers in Physiology, 2016, 7, 276.	2.8	9
111	Diaphragm Muscle Adaptation to Sustained Hypoxia: Lessons from Animal Models with Relevance to High Altitude and Chronic Respiratory Diseases. Frontiers in Physiology, 2016, 7, 623.	2.8	17
112	<i>In vivo</i> neutralization of <scp>IL</scp> â€6 receptors ameliorates gastrointestinal dysfunction in dystrophinâ€deficient <i>mdx</i> mice. Neurogastroenterology and Motility, 2016, 28, 1016-1026.	3.0	14
113	Redox Remodeling Is Pivotal in Murine Diaphragm Muscle Adaptation to Chronic Sustained Hypoxia. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 12-23.	2.9	25
114	Diaphragm muscle weakness and increased UCP-3 gene expression following acute hypoxic stress in the mouse. Respiratory Physiology and Neurobiology, 2016, 226, 76-80.	1.6	12
115	A paradigm shift in oxygen sensing with a twist in the tale!. Biochemical Journal, 2016, 473, 2687-2689.	3.7	3
116	Counterâ€regulatory control of homeostasis during hypoglycaemia: adrenaline hits the sweet spot in the controversy concerning carotid body glucose sensing. Journal of Physiology, 2016, 594, 4091-4092.	2.9	2
117	Physiology in fine fettle in the fair city. Irish Journal of Medical Science, 2016, 185, 771-771.	1.5	0
118	Blast from the past! Phrenic motor memory of antecedent episodic hypercapnia is serotonin dependent: relevance to respiratory rehabilitation and sleepâ€disordered breathing?. Experimental Physiology, 2016, 101, 258-259.	2.0	4
119	Engineering a solution to explore the cardiorespiratory limits to exercise performance: take a load off!. Experimental Physiology, 2016, 101, 695-696.	2.0	0
120	Measure what is measurable: IJMS comes of age as the baton changes hands. Irish Journal of Medical Science, 2016, 185, 769-769.	1.5	0
121	Evidence of hypoxic tolerance in weak upper airway muscle from young mdx mice. Respiratory Physiology and Neurobiology, 2016, 226, 68-75.	1.6	16
122	Chronic intermittent hypoxia creates the perfect storm with calamitous consequences for respiratory control Respiratory Physiology and Neurobiology, 2016, 226, 63-67.	1.6	20
123	Delivery room end tidal CO ₂ monitoring in preterm infants <32â€weeks. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2016, 101, 62-65.	2.8	16
124	Tetany During Intravenous Conscious Sedation in Dentistry Resulting From Hyperventilation-Induced Hypocapnia. Anesthesia Progress, 2016, 63, 25-30.	0.5	1
125	Piling on the pressure to combat acute respiratory distress syndrome: a PEEP into the future?. Experimental Physiology, 2015, 100, 879-880.	2.0	0
126	Early life exposure to chronic intermittent hypoxia causes upper airway dilator muscle weakness, which persists into young adulthood. Experimental Physiology, 2015, 100, 947-966.	2.0	15

#	Article	IF	CITATIONS
127	Playing your heart out. Irish Journal of Medical Science, 2015, 184, 725-726.	1.5	0
128	Chronic sustained hypoxia-induced redox remodeling causes contractile dysfunction in mouse sternohyoid muscle. Frontiers in Physiology, 2015, 6, 122.	2.8	21
129	The β 2 â€adrenoceptor agonist terbutaline recovers rat pharyngeal dilator muscle force decline during severe hypoxia. Oral Diseases, 2015, 21, e121-7.	3.0	6
130	Chronic intermittent hypoxia increases rat sternohyoid muscle NADPH oxidase expression with attendant modest oxidative stress. Frontiers in Physiology, 2015, 6, 15.	2.8	21
131	Prenatal stress-induced alterations in major physiological systems correlate with gut microbiota composition in adulthood. Psychoneuroendocrinology, 2015, 60, 58-74.	2.7	224
132	Effects of Fractional Inspired Oxygen on Cerebral Oxygenation in PretermÂInfants following Delivery. Journal of Pediatrics, 2015, 167, 1007-1012.e1.	1.8	22
133	Improved tolerance of acute severe hypoxic stress in chronic hypoxic diaphragm is nitric oxide-dependent. Journal of Physiological Sciences, 2015, 65, 427-433.	2.1	8
134	Chronic intermittent hypoxia orchestrates cardiorespiratory cacophony – adapting melody to malady. Experimental Physiology, 2015, 100, 227-228.	2.0	0
135	Chronic Intermittent Hypoxia Blunts the Expression of Ventilatory Long Term Facilitation in Sleeping Rats. Advances in Experimental Medicine and Biology, 2015, 860, 335-342.	1.6	10
136	Respiratory Control in the mdx Mouse Model of Duchenne Muscular Dystrophy. Advances in Experimental Medicine and Biology, 2015, 860, 239-244.	1.6	14
137	Redox Remodelling in Diaphragm Muscle Adaptation to Chronic Sustained Hypoxia. FASEB Journal, 2015, 29, 859.8.	0.5	0
138	Respiratory Function in the Mdx Mouse Model of Duchenne Muscular Dystrophy: Role of Hypoxia, Stress and Immune Factors. FASEB Journal, 2015, 29, 660.6.	0.5	0
139	Sweet Success Should Set Tongues Wagging. A Portrait of Airway Muscle Injury in Sleep Apnea. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 1299-1300.	5.6	2
140	Chronic nitric oxide synthase inhibition does not impair upper airway muscle adaptation to chronic intermittent hypoxia in the rat. Progress in Brain Research, 2014, 212, 237-251.	1.4	8
141	Hydrogen peroxide alters sternohyoid muscle function. Oral Diseases, 2014, 20, 162-170.	3.0	7
142	Reactive oxygen species mediated diaphragm fatigue in a rat model of chronic intermittent hypoxia. Experimental Physiology, 2014, 99, 688-700.	2.0	43
143	Getting jittery about the mechanism of hypertension in sleep apnoea. Experimental Physiology, 2014, 99, 1283-1284.	2.0	0
144	Modulation of enteric neurons by interleukinâ€6 and corticotropinâ€releasing factor contributes to visceral hypersensitivity and altered colonic motility in a rat model of irritable bowel syndrome. Journal of Physiology, 2014, 592, 5235-5250.	2.9	64

#	Article	IF	CITATIONS
145	Effects of sustained hypoxia on sternohyoid and diaphragm muscle during development. European Respiratory Journal, 2014, 43, 1149-1158.	6.7	17
146	Effects of prolyl-hydroxylase inhibition and chronic intermittent hypoxia on synaptic transmission and plasticity in the rat CA1 and dentate gyrus. Neurobiology of Disease, 2014, 62, 8-17.	4.4	39
147	Effect of Chronic Intermittent Hypoxia on the Reflex Recruitment of the Genioglossus During Airway Obstruction in the Anesthetized Rat. Progress in Brain Research, 2014, 209, 147-168.	1.4	9
148	Increased cardiac output contributes to the development of chronic intermittent hypoxiaâ€induced hypertension. Experimental Physiology, 2014, 99, 1312-1324.	2.0	30
149	Sternohyoid and diaphragm muscle form and function during postnatal development in the rat. Experimental Physiology, 2013, 98, 1386-1400.	2.0	8
150	Diaphragm Muscle Remodeling in a Rat Model of Chronic Intermittent Hypoxia. Journal of Histochemistry and Cytochemistry, 2013, 61, 487-499.	2.5	24
151	Upper Airway Dilator Muscle Weakness Following Intermittent and Sustained Hypoxia in the Rat: Effects of a Superoxide Scavenger. Physiological Research, 2013, 62, 187-196.	0.9	11
152	Timeâ€dependent muscleâ€specific protein oxidation in a mouse model of chronic hypoxia. FASEB Journal, 2013, 27, 719.2.	0.5	0
153	Tempol Ameliorates Pharyngeal Dilator Muscle Dysfunction in a Rodent Model of Chronic Intermittent Hypoxia. American Journal of Respiratory Cell and Molecular Biology, 2012, 46, 139-148.	2.9	50
154	Proâ€inflammatory cytokines do not affect basal or hypoxiaâ€stimulated discharge of rat vagal paraganglia. Experimental Physiology, 2012, 97, 1203-1210.	2.0	8
155	Chronic Intermittent Hypoxia Increases Apnoea Index in Sleeping Rats. Advances in Experimental Medicine and Biology, 2012, 758, 359-363.	1.6	23
156	Respiratory control and sternohyoid muscle structure and function in aged male rats: Decreased susceptibility to chronic intermittent hypoxia. Respiratory Physiology and Neurobiology, 2012, 180, 175-182.	1.6	14
157	Comparison of the motor discharge to the voluntary sphincters of continence in the rat. Neurogastroenterology and Motility, 2012, 24, e175-84.	3.0	5
158	Chronic Intermittent Hypoxia Alters Genioglossus Motor Unit Discharge Patterns in the Anaesthetized Rat. Advances in Experimental Medicine and Biology, 2012, 758, 295-300.	1.6	9
159	Propranolol Does Not Affect the Hindlimb Vasodilatation Elicited by Stimulation of Superior Laryngeal Nerve Paraganglia. Advances in Experimental Medicine and Biology, 2012, 758, 273-277.	1.6	0
160	Genioglossus motor unit properties in a rat model of sleep apnoea. FASEB Journal, 2012, 26, 1147.7.	0.5	0
161	?Double-Trouble? for Respiratory Control in Pompe Disease. Frontiers in Physiology, 2011, 2, 54.	2.8	0
162	Chronic hypoxia increases rat diaphragm muscle endurance and sodium-potassium ATPase pump content. European Respiratory Journal, 2011, 37, 1474-1481.	6.7	44

#	Article	IF	CITATIONS
163	Structural and Functional Properties of an Upper Airway Dilator Muscle in Aged Obese Male Rats. Respiration, 2011, 82, 539-549.	2.6	11
164	The effect of pro-inflammatory cytokines on the discharge rate of vagal nerve paraganglia in the rat. Respiratory Physiology and Neurobiology, 2010, 171, 122-127.	1.6	10
165	Comparison of the contractile properties, oxidative capacities and fibre type profiles of the voluntary sphincters of continence in the rat. Journal of Anatomy, 2010, 217, 187-195.	1.5	17
166	Superoxide Scavengers Improve Rat Pharyngeal Dilator Muscle Performance. American Journal of Respiratory Cell and Molecular Biology, 2010, 42, 725-731.	2.9	27
167	Intermittent Hypoxia Impairs Pharyngeal Dilator Muscle Function in Male But Not Female Rats. Advances in Experimental Medicine and Biology, 2010, 669, 285-287.	1.6	13
168	Antioxidant Treatment Does Not Prevent Chronic Hypoxia-Induced Respiratory Muscle Impairment in Developing Rats. Advances in Experimental Medicine and Biology, 2010, 669, 263-266.	1.6	2
169	Respiratory Plasticity in the Behaving Rat Following Chronic Intermittent Hypoxia. Advances in Experimental Medicine and Biology, 2010, 669, 267-270.	1.6	6
170	Oxidative Stress Impairs Upper Airway Muscle Endurance in an Animal Model of Sleep-Disordered Breathing. Advances in Experimental Medicine and Biology, 2008, 605, 458-462.	1.6	43
171	Upper airway pressure-flow relationships and pharyngeal constrictor EMG activity during prolonged expiration in awake goats. Journal of Applied Physiology, 2008, 105, 100-108.	2.5	0
172	Nitric oxide modulates rat pharyngeal dilator muscle force and endurance during hypoxia. FASEB Journal, 2008, 22, 739.4.	0.5	1
173	Tempol, a SODâ€mimetic, improves rat pharyngeal dilator muscle performance during hyperoxia and hypoxia. FASEB Journal, 2008, 22, 739.3.	0.5	0
174	Peroxynitrite inhibits rat upper airway muscle force. FASEB Journal, 2008, 22, 172-172.	0.5	0
175	The Pathophysiology of Sleep Apnoea: What We have Learned from Animal Models of Chronic Intermittent Hypoxia. Current Respiratory Medicine Reviews, 2007, 3, 19-27.	0.2	2
176	Respiratory plasticity in response to changes in oxygen supply and demand. Integrative and Comparative Biology, 2007, 47, 532-551.	2.0	18
177	The Effects of Breath-Holds and Muller Manoeuvres on Upper Airway Carbon Dioxide Concentration in Humans. Respiration, 2007, 74, 533-536.	2.6	1
178	Effects of nicotine on rat sternohyoid muscle contractile properties. Respiratory Physiology and Neurobiology, 2006, 150, 200-210.	1.6	20
179	Does episodic hypoxia affect upper airway dilator muscle function? Implications for the pathophysiology of obstructive sleep apnoea. Respiratory Physiology and Neurobiology, 2005, 147, 223-234.	1.6	74
180	Effects of chronic hypobaric hypoxia on contractile properties of rat sternohyoid and diaphragm muscles. Clinical and Experimental Pharmacology and Physiology, 2003, 30, 551-554.	1.9	24

#	Article	IF	CITATIONS
181	Upper airway EMG responses to acute hypoxia and asphyxia are impaired in streptozotocin-induced diabetic rats. Respiratory Physiology and Neurobiology, 2003, 138, 301-308.	1.6	2
182	Dopaminergic excitation of the goat carotid body is mediated by the serotonin type 3 receptor subtype. Respiratory Physiology and Neurobiology, 2003, 136, 1-12.	1.6	9
183	Chronic Intermittent Asphyxia Impairs Rat Upper Airway Muscle Responses to Acute Hypoxia and Asphyxia. Chest, 2002, 122, 269-275.	0.8	37
184	Effect of 8-OH DPAT and ketanserin on the ventilatory acclimatization to hypoxia in awake goats. Respiration Physiology, 2001, 124, 95-104.	2.7	10
185	α2A-Adrenoceptor mediated tachypnea in awake goats. Respiration Physiology, 2001, 125, 169-179.	2.7	3
186	Ventilatory effects of α2-adrenoceptor blockade in awake goats. Respiration Physiology, 2001, 126, 29-41.	2.7	9
187	Effects of upper airway carbon dioxide on upper airway resistance and muscle activity in young guinea-pigs. European Respiratory Journal, 2000, 15, 902-905.	6.7	6
188	Clonidine induces upper airway closure in awake goats. Respiration Physiology, 2000, 123, 165-176.	2.7	11
189	Respiratory-related pharyngeal constrictor muscle activity in awake goats. Respiration Physiology, 1999, 116, 9-23.	2.7	13
190	Nonvagal tachypnea following α2-adrenoceptor stimulation in awake goats. Respiration Physiology, 1999, 118, 15-24.	2.7	7
191	Methysergide augments the acute, but not the sustained, hypoxic ventilatory response in goats. Respiration Physiology, 1999, 118, 25-37.	2.7	16
192	Carotid body dopaminergic mechanisms are functional after acclimatization to hypoxia in goats. Respiration Physiology, 1998, 111, 25-32.	2.7	91
193	Upper airway cooling reduces upper airway resistance in anaesthetized young guinea-pigs. European Respiratory Journal, 1998, 11, 1257-1262.	6.7	10
194	Influence of cervical sympathetic nerves on ventilation and upper airway resistance in the rat. European Respiratory Journal, 1998, 12, 177-184.	6.7	13
195	Effects of partial nerve injury on the responses of C-fiber polymodal nociceptors to adrenergic agonists. Brain Research, 1997, 759, 233-240.	2.2	55
196	Effect of upper airway cooling and CO ₂ on diaphragm and geniohyoid muscle activity in the rat. European Respiratory Journal, 1996, 9, 2323-2327.	6.7	16
197	Effect of Almitrine on Ventilation and on Diaphragm and Geniohyoid Muscle Activity in the Rat. Clinical Science, 1996, 91, 337-345.	4.3	11
198	Effects of superior layngeal nerve section on ventilation in neonatal guinea-pigs. Respiration Physiology, 1995, 101, 23-29.	2.7	12

#	Article	IF	CITATIONS
199	Ventilatory and upper-airway resistance responses to upper-airway cooling and CO2 in anaesthetised rats. Pflugers Archiv European Journal of Physiology, 1994, 429, 262-266.	2.8	22
200	Royal academy of medicine in Ireland section of biomedical sciences. Irish Journal of Medical Science, 1994, 163, 258-268.	1.5	1