Purnendu K Dasgupta

List of Publications by Citations

Source: https://exaly.com/author-pdf/6621698/purnendu-k-dasgupta-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

381 papers

12,577 citations

55 h-index 89 g-index

388 ext. papers

13,347 ext. citations

7.1 avg, IF

6.46 L-index

#	Paper	IF	Citations
381	Analytical chemistry in a drop. Solvent extraction in a microdrop. <i>Analytical Chemistry</i> , 1996 , 68, 1817-2	1 ₇ .8	619
380	Fluorescence properties of metal complexes of 8-hydroxyquinoline-5-sulfonic acid and chromatographic applications. <i>Analytical Chemistry</i> , 1987 , 59, 629-636	7.8	325
379	The origin of naturally occurring perchlorate: the role of atmospheric processes. <i>Environmental Science & Environmental Scien</i>	10.3	324
378	Recent developments in cyanide detection: a review. <i>Analytica Chimica Acta</i> , 2010 , 673, 117-25	6.6	255
377	Perchlorate and iodide in dairy and breast milk. Environmental Science & Eamp; Technology, 2005, 39, 2017	1-170.3	255
376	Liquid Droplet. A Renewable Gas Sampling Interface. <i>Analytical Chemistry</i> , 1995 , 67, 2042-2049	7.8	182
375	Hematin as a peroxidase substitute in hydrogen peroxide determinations. <i>Analytical Chemistry</i> , 1992 , 64, 517-22	7.8	175
374	Light emitting diode-based detectors: Absorbance, fluorescence and spectroelectrochemical measurements in a planar flow-through cell. <i>Analytica Chimica Acta</i> , 2003 , 500, 337-364	6.6	164
373	Perchlorate in the United States. Analysis of relative source contributions to the food chain. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	145
372	Perchlorate in milk. Environmental Science & Environme	10.3	140
371	Fluorometric measurement of aqueous ammonium ion in a flow injection system. <i>Analytical Chemistry</i> , 1989 , 61, 408-412	7.8	140
370	Determination of atmospheric sulfur dioxide without tetrachloromercurate(II) and the mechanism of the Schiff reaction. <i>Analytical Chemistry</i> , 1980 , 52, 1912-1922	7.8	121
369	Speciation and detection of arsenic in aqueous samples: a review of recent progress in non-atomic spectrometric methods. <i>Analytica Chimica Acta</i> , 2014 , 831, 1-23	6.6	115
368	Electroosmosis: A Reliable Fluid Propulsion System for Flow Injection Analysis. <i>Analytical Chemistry</i> , 1994 , 66, 1792-1798	7.8	109
367	Solubility of gaseous formaldehyde in liquid water and generation of trace standard gaseous formaldehyde. <i>Environmental Science & Environmental Scien</i>	10.3	108
366	Continuous Automated Measurement of the Soluble Fraction of Atmospheric Particulate Matter. <i>Analytical Chemistry</i> , 1995 , 67, 71-78	7.8	103
365	High-Sensitivity Gas Sensors Based on Gas-Permeable Liquid Core Waveguides and Long-Path Absorbance Detection. <i>Analytical Chemistry</i> , 1998 , 70, 4661-4669	7.8	102

(2000-1987)

364	Fast fluorometric flow injection analysis of formaldehyde in atmospheric water. <i>Environmental Science & Environmental Science</i>	10.3	100
363	Review of analytical methods for the quantification of iodine in complex matrices. <i>Analytica Chimica Acta</i> , 2011 , 702, 16-36	6.6	99
362	A miniaturized liquid core waveguide-capillary electrophoresis system with flow injection sample introduction and fluorometric detection using light-emitting diodes. <i>Analytical Chemistry</i> , 2001 , 73, 454	1 <i>5</i> 7-9 ⁸	99
361	Continuous automated measurement of gaseous nitrous and nitric acids and particulate nitrite and nitrate. <i>Environmental Science & Environmental Scien</i>	10.3	97
360	Continuous liquid-phase fluorometry coupled to a diffusion scrubber for the real-time determination of atmospheric formaldehyde, hydrogen peroxide and sulfur dioxide. <i>Atmospheric Environment</i> , 1988 , 22, 949-963		95
359	Perchlorate in dairy milk. Comparison of Japan versus the United States. <i>Environmental Science & Environmental Science</i>	10.3	94
358	Determination of acetone in breath. <i>Analytica Chimica Acta</i> , 2005 , 535, 189-199	6.6	92
357	Wet effluent denuder coupled liquid/ion chromatography systems: annular and parallel plate denuders. <i>Analytical Chemistry</i> , 1993 , 65, 1134-1139	7.8	92
356	Light at the end of the tunnel: recent analytical applications of liquid-core waveguides. <i>TrAC</i> - <i>Trends in Analytical Chemistry</i> , 2004 , 23, 385-392	14.6	91
355	Iodine nutrition: iodine content of iodized salt in the United States. <i>Environmental Science & Environmental Science & Technology</i> , 2008 , 42, 1315-23	10.3	90
354	Suppressed conductometric capillary electrophoresis separation systems. <i>Analytical Chemistry</i> , 1993 , 65, 1003-1011	7.8	89
353	Nitroprusside and methylene blue methods for silicone membrane differentiated flow injection determination of sulfide in water and wastewater. <i>Analytical Chemistry</i> , 1992 , 64, 36-43	7.8	89
352	Light-emitting diodes for analytical chemistry. Annual Review of Analytical Chemistry, 2014, 7, 183-207	12.5	87
351	A general, positive ion mode ESI-MS approach for the analysis of singly charged inorganic and organic anions using a dicationic reagent. <i>Analytical Chemistry</i> , 2007 , 79, 7346-52	7.8	82
350	Luminescence detection with a liquid core waveguide. <i>Analytical Chemistry</i> , 1999 , 71, 1400-7	7.8	82
349	A field-deployable instrument for the measurement and speciation of arsenic in potable water. <i>Analytica Chimica Acta</i> , 1999 , 380, 27-37	6.6	8o
348	Temporal patterns in perchlorate, thiocyanate, and iodide excretion in human milk. <i>Environmental Health Perspectives</i> , 2007 , 115, 182-6	8.4	79
347	Measurement of atmospheric hydrogen peroxide and hydroxymethyl hydroperoxide with a diffusion scrubber and light emitting diode-liquid core waveguide-based fluorometry. <i>Analytical Chemistry</i> , 2000 , 72, 5338-47	7.8	79

346	Fluorometric flow injection determination of aqueous peroxides at nanomolar level using membrane reactors. <i>Analytical Chemistry</i> , 1986 , 58, 1521-1524	7.8	78
345	Gas-phase ion association provides increased selectivity and sensitivity for measuring perchlorate by mass spectrometry. <i>Analytical Chemistry</i> , 2005 , 77, 4829-35	7.8	77
344	A Renewable Liquid Droplet as a Sampler and a Windowless Optical Cell. Automated Sensor for Gaseous Chlorine. <i>Analytical Chemistry</i> , 1995 , 67, 4221-4228	7.8	74
343	Measurement of atmospheric ammonia. <i>Environmental Science & Eamp; Technology</i> , 1989 , 23, 1467-1474	10.3	72
342	Continuous Automated Determination of Atmospheric Formaldehyde at the Parts Per Trillion Level. <i>Analytical Chemistry</i> , 1994 , 66, 551-556	7.8	71
341	Thermodynamics of the hydrogen peroxide-water system. <i>Environmental Science & Environmental &</i>	10.3	70
340	Analytical Chemistry in a Liquid Film/Droplet. <i>Analytical Chemistry</i> , 1995 , 67, 2562-2566	7.8	69
339	Perchlorate production by ozone oxidation of chloride in aqueous and dry systems. <i>Science of the Total Environment</i> , 2008 , 405, 301-9	10.2	67
338	Measurement of ammonia in human breath with a liquid-film conductivity sensor. <i>Analytical Chemistry</i> , 2006 , 78, 7284-91	7.8	65
337	Sampling frequency, response times and embedded signal filtration in fast, high efficiency liquid chromatography: A tutorial. <i>Analytica Chimica Acta</i> , 2016 , 907, 31-44	6.6	63
336	Portable flow-injection analyzer with liquid-core waveguide based fluorescence, luminescence, and long path length absorbance detector. <i>Analytica Chimica Acta</i> , 2003 , 479, 151-165	6.6	63
335	Determination of trace perchlorate in high-salinity water samples by ion chromatography with on-line preconcentration and preelution. <i>Analytical Chemistry</i> , 2003 , 75, 701-6	7.8	63
334	Intake of iodine and perchlorate and excretion in human milk. <i>Environmental Science & Environmental &</i>	10.3	62
333	Perchlorate in seawater: bioconcentration of iodide and perchlorate by various seaweed species. <i>Analytica Chimica Acta</i> , 2006 , 567, 100-7	6.6	62
332	Variations and sources of ambient formaldehyde for the 2008 Beijing Olympic games. <i>Atmospheric Environment</i> , 2010 , 44, 2632-2639	5.3	61
331	Measurement of ambient nitrous acid and a reliable calibration source for gaseous nitrous acid. <i>Environmental Science & Environmental Science & Envir</i>	10.3	60
330	Wet effluent denuder coupled liquid/ion chromatography systems. <i>Analytical Chemistry</i> , 1991 , 63, 1237	- 1 /2842	59
329	Field measurement of acid gases and soluble anions in atmospheric particulate matter using a parallel plate wet denuder and an alternating filter-based automated analysis system. <i>Analytical Chemistry</i> , 2002 , 74, 1256-68	7.8	58

(2009-2007)

328	Open tubular anion exchange chromatography. Controlled layered architecture of stationary phase by successive condensation polymerization. <i>Analytical Chemistry</i> , 2007 , 79, 5462-7	7.8	57	
327	Summertime ambient formaldehyde in five U.S. metropolitan areas: Nashville, Atlanta, Houston, Philadelphia, and Tampa. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	57	
326	Measurement of gaseous and aqueous trace formaldehyde. <i>Analytica Chimica Acta</i> , 2005 , 531, 51-68	6.6	55	
325	Measurement of atmospheric nitric and nitrous acids with a wet effluent diffusion denuder and low-pressure ion chromatography-postcolumn reaction detection. <i>Analytical Chemistry</i> , 1991 , 63, 2210-	2276	55	
324	Iron(III) modification of Bacillus subtilis membranes provides record sorption capacity for arsenic and endows unusual selectivity for As(V). <i>Environmental Science & amp; Technology</i> , 2012 , 46, 2251-6	10.3	53	
323	Measurement of Gases by a Suppressed Conductometric Capillary Electrophoresis Separation System. <i>Analytical Chemistry</i> , 1995 , 67, 3853-3860	7.8	52	
322	Electrodialytic eluent production and gradient generation in ion chromatography. <i>Analytical Chemistry</i> , 1991 , 63, 480-486	7.8	51	
321	Field instrument for simultaneous large dynamic range measurement of atmospheric hydrogen sulfide, methanethiol, and sulfur dioxide. <i>Environmental Science & Environmental Sc</i>	10.3	50	
320	Membrane interfaces for sample introduction in capillary zone electrophoresis. <i>Analytical Chemistry</i> , 1992 , 64, 991-996	7.8	50	
319	Flow-injection analysis in the capillary format using electroosmotic pumping. <i>Analytica Chimica Acta</i> , 1992 , 268, 1-6	6.6	48	
318	Simultaneous photometric flow-injection determination of sulfide, polysulfide, sulfite, thiosulfate, and sulfate. <i>Analytical Chemistry</i> , 1991 , 63, 427-432	7.8	48	
317	Superheated water eluent capillary liquid chromatography. <i>Talanta</i> , 2002 , 56, 977-87	6.2	47	
316	A liquid drop: A windowless optical cell and a reactor without walls for flow injection analysis. <i>Analytica Chimica Acta</i> , 1996 , 326, 13-22	6.6	47	
315	Electrodialytic membrane suppressor for ion chromatography. <i>Analytical Chemistry</i> , 1989 , 61, 939-945	7.8	47	
314	A diffusion scrubber for the collection of atmospheric gases. <i>Atmospheric Environment</i> , 1984 , 18, 1593-	1599	47	
313	Fluorometric field instrument for continuous measurement of atmospheric hydrogen sulfide. <i>Analytical Chemistry</i> , 2001 , 73, 5716-24	7.8	46	
312	Comparison of techniques for measurement of ambient levels of hydrogen peroxide. <i>Environmental Science & Environmental Scienc</i>	10.3	46	
311	Sensing parts per million levels of gaseous NO2 by a optical fiber transducer based on calix[4]arenes. <i>Talanta</i> , 2009 , 77, 1814-20	6.2	45	

310	A capacitance sensor for water: trace moisture measurement in gases and organic solvents. Analytical Chemistry, 2012 , 84, 8891-7	7.8	44	
309	A continuous analyzer for soluble anionic constituents and ammonium in atmospheric particulate matter. <i>Environmental Science & Environmental Science </i>	10.3	44	
308	Chemiluminescence detection with a liquid core waveguide: Determination of ammonium with electrogenerated hypochlorite based on the luminol-hypochlorite reaction. <i>Analytica Chimica Acta</i> , 1999 , 398, 33-39	6.6	44	
307	Small-Volume Raman Spectroscopy with a Liquid Core Waveguide. <i>Analytical Chemistry</i> , 1999 , 71, 2934-	2 9 .88	44	
306	Automated Measurement of Atmospheric Trace Gases. Advances in Chemistry Series, 1993, 41-90		44	
305	A gas-phase chemiluminescence-based analyzer for waterborne arsenic. <i>Analytical Chemistry</i> , 2006 , 78, 7088-97	7.8	43	
304	A disposable blood cyanide sensor. <i>Analytica Chimica Acta</i> , 2013 , 768, 129-35	6.6	42	
303	Free solution hydrodynamic separation of DNA fragments from 75 to 106,000 base pairs in a single run. <i>Journal of the American Chemical Society</i> , 2010 , 132, 40-1	16.4	42	
302	Determination of oxidative stability of oils and fats. <i>Analytical Chemistry</i> , 1999 , 71, 1692-8	7.8	42	
301	Liquid chromatographic determination of nitro-substituted polynuclear aromatic hydrocarbons by sequential electrochemical and fluorescence detection. <i>Analytical Chemistry</i> , 1996 , 68, 1226-32	7.8	42	
300	Flow-injection extraction without phase separation based on dual-wavelength spectrophotometry. <i>Analytica Chimica Acta</i> , 1994 , 288, 237-245	6.6	42	
299	Nanocapillaries for open tubular chromatographic separations of proteins in femtoliter to picoliter samples. <i>Analytical Chemistry</i> , 2009 , 81, 7428-35	7.8	41	
298	Measurement of atmospheric formaldehyde with a diffusion scrubber and light-emitting diodellquid-core waveguide based fluorometry. <i>Field Analytical Chemistry and Technology</i> , 2001 , 5, 2-12		41	
297	Electroosmotically pumped capillary flow-injection analysis. <i>Analytica Chimica Acta</i> , 1993 , 283, 739-745	6.6	41	
296	Compact, field-portable capillary ion chromatograph. <i>Journal of Chromatography A</i> , 1998 , 804, 45-54	4.5	40	
295	Durable microfabricated high-speed humidity sensors. <i>Analytical Chemistry</i> , 2004 , 76, 2561-7	7.8	40	
294	Pulsed excitation source multiplexed fluorometry for the simultaneous measurement of multiple analytes. Continuous measurement of atmospheric hydrogen peroxide and methyl hydroperoxide. <i>Analytical Chemistry</i> , 2003 , 75, 1203-10	7.8	40	
293	Hybrid microfabricated device for field measurement of atmospheric sulfur dioxide. <i>Analytical Chemistry</i> , 2002 , 74, 5890-6	7.8	40	

(2016-1999)

292	Optical fiber coupled light emitting diode based absorbance detector with a reflective flow cell. <i>Talanta</i> , 1999 , 50, 481-90	6.2	40
291	Determination of hydrogen peroxide by photoinduced fluorogenic reactions. <i>Analytica Chimica Acta</i> , 1991 , 243, 207-216	6.6	40
290	Application of a nested loop system for the flow injection analysis of trace aqueous peroxides. <i>Analytical Chemistry</i> , 1985 , 57, 1009-1012	7.8	40
289	Cobinamide-based cyanide analysis by multiwavelength spectrometry in a liquid core waveguide. <i>Analytical Chemistry</i> , 2010 , 82, 6244-50	7.8	39
288	Sample processing method for the determination of perchlorate in milk. <i>Analytica Chimica Acta</i> , 2006 , 567, 73-8	6.6	39
287	Capillary ion chromatography. <i>Journal of Separation Science</i> , 2004 , 27, 1441-57	3.4	39
286	Dual-wavelength photometry with light emitting diodes. Compensation of refractive index and turbidity effects in flow-injection analysis. <i>Analytica Chimica Acta</i> , 1994 , 289, 347-353	6.6	38
285	Measurement of atmospheric sulfur dioxide by diffusion scrubber coupled ion chromatography. <i>Analytical Chemistry</i> , 1989 , 61, 19-24	7.8	38
284	Rapid point of care analyzer for the measurement of cyanide in blood. <i>Analytical Chemistry</i> , 2011 , 83, 4319-24	7.8	37
283	An automated hydride generation interface to ICPMS for measuring total arsenic in environmental samples. <i>Analytical Chemistry</i> , 2009 , 81, 9737-43	7.8	37
282	Trace gas measurement with an integrated porous tube collector/long-path absorbance detector. <i>Analytical Chemistry</i> , 2003 , 75, 4050-6	7.8	37
281	Photometric measurement of trace As(III) and As(V) in drinking water. <i>Talanta</i> , 2002 , 58, 153-64	6.2	37
280	Multipath cells for extending dynamic range of optical absorbance measurements. <i>Analytical Chemistry</i> , 1984 , 56, 1401-1403	7.8	37
279	Cobinamide chemistries for photometric cyanide determination. A merging zone liquid core waveguide cyanide analyzer using cyanoaquacobinamide. <i>Analytica Chimica Acta</i> , 2012 , 736, 78-84	6.6	36
278	Capillary Ion Chromatography with On-Line High-Pressure Electrodialytic NaOH Eluent Production and Gradient Generation. <i>Analytical Chemistry</i> , 1997 , 69, 1385-91	7.8	36
277	Computer-Interfaced Bipolar Pulse Conductivity Detector for Capillary Systems. <i>Analytical Chemistry</i> , 1994 , 66, 2537-2543	7.8	36
276	Fluorimetric determination of trace hydrogen peroxide in water with a flow injection system. <i>Analytica Chimica Acta</i> , 1985 , 170, 347-352	6.6	36
275	Poly(vinyl alcohol) Modified Porous Graphitic Carbon Stationary Phase for Hydrophilic Interaction Liquid Chromatography. <i>Analytical Chemistry</i> , 2016 , 88, 4676-81	7.8	36

274	Expanding the linear dynamic range for multiple reaction monitoring in quantitative liquid chromatography-tandem mass spectrometry utilizing natural isotopologue transitions. <i>Talanta</i> , 2011 , 87, 307-10	6.2	35
273	Green analyzer for the measurement of total arsenic in drinking water: electrochemical reduction of arsenate to arsine and gas phase chemiluminescence with ozone. <i>Analytical Chemistry</i> , 2010 , 82, 346	57 ⁷ 7 ⁸ 3	35
272	Automated measurement of urinary creatinine by multichannel kinetic spectrophotometry. <i>Analytical Biochemistry</i> , 2009 , 384, 238-44	3.1	35
271	Hybrid fluorometric flow analyzer for ammonia. <i>Analytical Chemistry</i> , 2006 , 78, 1890-6	7.8	35
270	Capillary scale admittance detection. <i>Analytical Chemistry</i> , 2014 , 86, 11538-46	7.8	34
269	Live HeLa cells preconcentrate and differentiate inorganic arsenic species. <i>Analytical Chemistry</i> , 2009 , 81, 1291-6	7.8	34
268	Speciation-capable field instrument for the measurement of arsenite and arsenate in water. <i>Analytical Chemistry</i> , 2005 , 77, 4765-73	7.8	34
267	Determination of sulfide and mercaptans in caustic scrubbing liquor. <i>Analytica Chimica Acta</i> , 1989 , 226, 165-170	6.6	34
266	Annular helical suppressor for ion chromatography. <i>Analytical Chemistry</i> , 1984 , 56, 103-105	7.8	34
265	Porous membrane-based diffusion scrubber for the sampling of atmospheric gases. <i>Analyst, The</i> , 1986 , 111, 87	5	34
264	Creatinine adjustment of spot urine samples and 24 h excretion of iodine, selenium, perchlorate, and thiocyanate. <i>Environmental Science & Environmental Science & Environment</i>	10.3	33
263	Preconcentration/preelution ion chromatography for the determination of perchlorate in complex samples. <i>Talanta</i> , 2005 , 65, 750-5	6.2	33
262	Continuous automated measurement of hexavalent chromium in airborne particulate matter. <i>Analytical Chemistry</i> , 2001 , 73, 2034-40	7.8	33
261	On-line electrodialytic salt removal in electrospray ionization mass spectrometry of proteins. <i>Analytical Chemistry</i> , 2011 , 83, 1015-21	7.8	32
260	Fiber optic sensor for simultaneous determination of atmospheric nitrogen dioxide, ozone, and relative humidity. <i>Analytical Chemistry</i> , 2009 , 81, 4183-91	7.8	32
259	Measurement of gaseous hydrogen peroxide with a liquid core waveguide chemiluminescence detector. <i>Analytica Chimica Acta</i> , 2001 , 442, 63-70	6.6	32
258	Admittance detector for high impedance systems: design and applications. <i>Analytical Chemistry</i> , 2014 , 86, 11547-53	7.8	31
257	On-line gas-free electrodialytic eluent generator for capillary ion chromatography. <i>Analytical Chemistry</i> , 2008 , 80, 40-7	7.8	31

(1993-2007)

256	Liquid chromatographic arsenic speciation with gas-phase chemiluminescence detection. <i>Analytical Chemistry</i> , 2007 , 79, 9197-204	7.8	31
255	Dispersion in open tubular reactors of various geometries. <i>Analytica Chimica Acta</i> , 2001 , 428, 163-171	6.6	31
254	Gradient anion chromatography with hydroxide and carbonate eluents using simultaneous conductivity and pH detection. <i>Analytical Chemistry</i> , 1987 , 59, 802-808	7.8	31
253	Simultaneous Electrodialytic Preconcentration and Speciation of Chromium(III) and Chromium(VI). <i>Analytical Chemistry</i> , 2015 , 87, 11575-80	7.8	30
252	Formaldehyde content of atmospheric aerosol. <i>Environmental Science & Environmental Science & Environm</i>	6-43 3	30
251	An affordable high-performance optical absorbance detector for capillary systems. <i>Analytica Chimica Acta</i> , 1997 , 342, 123-132	6.6	30
250	Matrix interference free determination of perchlorate in urine by ion association-ion chromatography-mass spectrometry. <i>Analytica Chimica Acta</i> , 2006 , 567, 79-86	6.6	30
249	Continuous on-line true titrations by feedback-based flow ratiometry. The principle of compensating errors. <i>Analytical Chemistry</i> , 2000 , 72, 4713-20	7.8	30
248	Determination of total mercury in water and urine by a gold film sensor following Fenton's reagent digestion. <i>Analytical Chemistry</i> , 1989 , 61, 1230-5	7.8	30
247	Auxiliary Electroosmotic Pumping in Capillary Electrophoresis. <i>Analytical Chemistry</i> , 1994 , 66, 3060-306	5 7.8	29
246	Amperometric microsensor for water. <i>Analytical Chemistry</i> , 1990 , 62, 1935-1942	7.8	29
245	Applications of in situ detection with an auto-mated micro batch analyzer. <i>Analytica Chimica Acta</i> , 1988 , 214, 107-120	6.6	29
244	An open tubular ion chromatograph. Analytical Chemistry, 2014, 86, 11554-61	7.8	28
243	Versatile gas/particle ion chromatograph. Environmental Science & Environmenta	10.3	28
242	NEW APPLICATIONS OF CHEMILUMINESCENCE FOR SELECTIVE GAS ANALYSIS. <i>Chemical Engineering Communications</i> , 2007 , 195, 82-97	2.2	27
241	Membrane-based parallel plate denuder for the collection and removal of soluble atmospheric gases. <i>Analytical Chemistry</i> , 2004 , 76, 1204-10	7.8	27
240	Measurement of nitrogen dioxide and nitrous acid using gas-permeable liquid core waveguides. <i>Analytica Chimica Acta</i> , 2001 , 431, 169-180	6.6	27
239	Two-dimensional conductometric detection in ion chromatography: sequential suppressed and single column detection. <i>Analytical Chemistry</i> , 1993 , 65, 1192-1198	7.8	27

238	A Diffusion Scrubber for the Collection of Gaseous Nitric Acid. <i>Separation Science and Technology</i> , 1987 , 22, 1255-1267	2.5	27
237	A Multiple Parallel Plate Wetted Screen Diffusion Denuder for High-Flow Air Sampling Applications. <i>Analytical Chemistry</i> , 1997 , 69, 5018-5023	7.8	26
236	Use of a capacitance measurement device for surrogate noncontact conductance measurement. <i>Talanta</i> , 2008 , 76, 617-20	6.2	26
235	Hot eluent capillary liquid chromatography using zirconia and titania based stationary phases. <i>Analytica Chimica Acta</i> , 2000 , 414, 71-78	6.6	26
234	A continuous film-recirculable drop gas-liquid equilibration device. Measurement of trace gaseous ammonia. <i>Analytical Chemistry</i> , 2000 , 72, 3165-70	7.8	26
233	Electromigration injection from a small loop in capillary electrophoresis. <i>Analytical Chemistry</i> , 1996 , 68, 4291-9	7.8	26
232	Performance of annular membrane and screen-tee reactors for postcolumn-reaction detection of metal ions separated by liquid chromatography. <i>Analytical Chemistry</i> , 1987 , 59, 85-90	7.8	26
231	Trace determination of aqueous sulfite, sulfide and methanethiol by fluorometric flow injection analysis. <i>Analytical Chemistry</i> , 1986 , 58, 2839-2844	7.8	26
230	Perchlorate, iodine supplements, iodized salt and breast milk iodine content. <i>Science of the Total Environment</i> , 2012 , 420, 73-8	10.2	25
229	A cold plasma dielectric barrier discharge atomic emission detector for atmospheric mercury. <i>Talanta</i> , 2010 , 81, 1109-15	6.2	25
228	Can breath isoprene be measured by ozone chemiluminescence?. <i>Analytical Chemistry</i> , 2007 , 79, 2641-9	7.8	25
227	Chemiluminometric measurement of atmospheric ozone with photoactivated chromotropic acid. <i>Analytical Chemistry</i> , 2003 , 75, 5916-25	7.8	25
226	Microscale continuous ion exchanger. Analytical Chemistry, 2002, 74, 5667-75	7.8	25
225	A pulse amperometric sensor for the measurement of atmospheric hydrogen peroxide. <i>Analytical Chemistry</i> , 1996 , 68, 2062-6	7.8	25
224	On-line electrodialytic matrix isolation for chromatographic determination of organic acids in wine. Journal of Chromatography A, 2014 , 1372C, 18-24	4.5	24
223	Capillary scale light emitting diode based multi-reflection absorbance detector. <i>Analytica Chimica Acta</i> , 2007 , 605, 166-74	6.6	24
222	Thin layer distillation for matrix isolation in flow analysis. <i>Talanta</i> , 2007 , 72, 741-6	6.2	24
221	Oxygen-independent poly(dimethylsiloxane)-based carbon-paste glucose biosensors. <i>Biosensors and Bioelectronics</i> , 2002 , 17, 999-1003	11.8	24

220	A simple means to increase absorbance detection sensitivity in capillary zone electrophoresis. <i>Analytica Chimica Acta</i> , 1993 , 283, 747-753	6.6	24
219	Electrodialytic production of gas-free sodium hydroxide based on Donnan breakdown. <i>Journal of Membrane Science</i> , 1991 , 57, 321-336	9.6	24
218	Ion penetration through tubular ion exchange membranes. Analytical Chemistry, 1985, 57, 253-257	7.8	24
217	Thiolated eggshell membranes sorb and speciate inorganic selenium. <i>Analyst, The</i> , 2011 , 136, 83-9	5	23
216	A Liquid Drop: What Is It Good For?. <i>Microchemical Journal</i> , 1997 , 57, 127-136	4.8	23
215	Robust hybrid flow analyzer for formaldehyde. <i>Environmental Science & Environmental & Environmental Science & Environmental Science & Environmental & Environmental Science & Environmental Science & Environmental &</i>	I -6 0.3	23
214	Gravity-flow open tubular cation chromatography. <i>Journal of Separation Science</i> , 2008 , 31, 2745-53	3.4	23
213	Mid-ultraviolet light-emitting diode detects dipicolinic acid. <i>Applied Spectroscopy</i> , 2004 , 58, 1360-3	3.1	23
212	Diffusion Scrubber-Based Field Measurements of Atmospheric Formaldehyde and Hydrogen Peroxide. <i>Aerosol Science and Technology</i> , 1990 , 12, 98-104	3.4	23
211	Low-Bleed Silica-Based Stationary Phase for Hydrophilic Interaction Liquid Chromatography. <i>Analytical Chemistry</i> , 2018 , 90, 8750-8755	7.8	22
210	Oxidation state-differentiated measurement of aqueous inorganic arsenic by continuous flow electrochemical arsine generation coupled to gas-phase chemiluminescence detection. <i>Analytical Chemistry</i> , 2011 , 83, 9378-83	7.8	22
209	Measurement of nitrophenols in rain and air by two-dimensional liquid chromatography-chemically active liquid core waveguide spectrometry. <i>Analytical Chemistry</i> , 2010 , 82, 5838-43	7.8	22
208	Selective measurement of gaseous hydrogen peroxide with light emitting diode-based liquid-core waveguide absorbance detector. <i>Analytical Sciences</i> , 2003 , 19, 517-23	1.7	22
207	Measurement of diffusive flux of ammonia from water. <i>Analytical Chemistry</i> , 1998 , 70, 3656-66	7.8	22
206	High performance optical absorbance detectors based on low noise switched integrators. <i>Talanta</i> , 1993 , 40, 1331-8	6.2	22
205	Determination of gaseous hydrogen peroxide at parts per trillion levels a Nafion membrane scrubber and a single-line flow-injection system. <i>Analytica Chimica Acta</i> , 1992 , 260, 57-64	6.6	22
204	Metal Ion Chromatography with Fluorescence Detection. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1987 , 10, 3287-3319		22
203	Quantitative study of chemical equilibria by flow injection analysis with diode array detection. <i>Analytical Chemistry</i> , 1986 , 58, 326-330	7.8	22

202	Black box linearization for greater linear dynamic range: the effect of power transforms on the representation of data. <i>Analytical Chemistry</i> , 2010 , 82, 10143-50	7.8	21
201	Atmospheric ozone measurement with an inexpensive and fully automated porous tube collector-colorimeter. <i>Talanta</i> , 2008 , 74, 958-64	6.2	21
200	Asymmetric membrane fiber-based carbon dioxide removal devices for ion chromatography. <i>Analytical Chemistry</i> , 2004 , 76, 7084-93	7.8	21
199	Automated Measurement of Lipid Hydroperoxides in Oil and Fat Samples by Flow Injection Photometry. <i>Analytical Chemistry</i> , 1999 , 71, 2053-2058	7.8	21
198	Measurement of Carbonyl Compounds as the 2,4-Dinitrophenylhydrazonate Anion. Reaction Mechanism and an Automated Measurement System. <i>Analytical Chemistry</i> , 1994 , 66, 1965-1970	7.8	21
197	Electrodialytic ion isolation for matrix removal. Analytical Chemistry, 2012, 84, 5421-6	7.8	20
196	A multifunctional dual membrane electrodialytic eluent generator for capillary ion chromatography. <i>Journal of Chromatography A</i> , 2009 , 1216, 2412-6	4.5	20
195	Trace iodine quantitation in biological samples by mass spectrometric methods: the optimum internal standard. <i>Talanta</i> , 2009 , 79, 235-42	6.2	20
194	A Falling Drop for Sample Injection in Capillary Zone Electrophoresis. <i>Analytical Chemistry</i> , 1997 , 69, 127	1 7. 821	6 20
193	Chromatographic peak resolution using Microsoft Excel Solver. The merit of time shifting input arrays. <i>Journal of Chromatography A</i> , 2008 , 1213, 50-5	4.5	20
192	Wet effluent parallel plate diffusion denuder coupled capillary ion chromatograph for the determination of atmospheric trace gases. <i>Talanta</i> , 1999 , 48, 675-84	6.2	20
191	Matrix isolation with an ion transfer device for interference-free simultaneous spectrophotometric determinations of hexavalent and trivalent chromium in a flow-based system. <i>Talanta</i> , 2017 , 164, 445-4	50 ²	19
190	Automated on-line preconcentration of trace aqueous mercury with gold trap focusing for cold vapor atomic absorption spectrometry. <i>Talanta</i> , 2012 , 99, 1040-5	6.2	19
189	Charge detector for the measurement of ionic solutes. <i>Analytical Chemistry</i> , 2010 , 82, 951-8	7.8	19
188	Entropy driven spontaneous formation of highly porous films from polymer-nanoparticle composites. <i>Nanotechnology</i> , 2009 , 20, 425602	3.4	19
187	Dicationic ion-pairing agents for the mass spectrometric determination of perchlorate. <i>Analytical Chemistry</i> , 2007 , 79, 7198-200	7.8	19
186	Simultaneous flow-injection measurement of hydroxide, chloride, hypochlorite and chlorate in Chlor-alkali cell effluents. <i>Talanta</i> , 2000 , 52, 623-30	6.2	19
185	Quantitative injection from a microloop. Reproducible volumetric sample introduction in capillary zone electrophoresis. <i>Analytical Chemistry</i> , 1996 , 68, 1164-8	7.8	19

(2004-1993)

184	Comparison of photometry and conductometry for the determination of total carbonate by gas permeation flow injection analysis. <i>Talanta</i> , 1993 , 40, 831-40	6.2	19
183	Sequential injection analysis in capillary format with an electroosmotic pump. <i>Talanta</i> , 1994 , 41, 1903-1	06.2	19
182	Selective determination of gases by two-stage membrane-differentiated flow injection analysis. Determination of trace hydrogen cyanide in the presence of large concentrations of hydrogen sulfide. <i>Analytical Chemistry</i> , 1992 , 64, 1106-1112	7.8	19
181	Selective detection approach to ion exclusion chromatography. <i>Analytical Chemistry</i> , 1989 , 61, 548-554	7.8	19
180	Kinetic approach to the measurement of chemical oxygen demand with an automated micro batch analyzer. <i>Analytical Chemistry</i> , 1990 , 62, 395-402	7.8	19
179	Design of a straight inlet diffusion scrubber. Comparison of particle transmission with other collection devices and characterization for the measurement of hydrogen peroxide and formaldehyde. <i>Atmospheric Environment Part A General Topics</i> , 1991 , 25, 2717-2729		19
178	Enhancement and quenching of fluorescence of metal chelates of 8-hydroxyquinoline-5-sulfonic acid. <i>Mikrochimica Acta</i> , 1986 , 88, 207-220	5.8	19
177	Linear and helical flow in a perfluorosulfonate membrane of annular geometry as a continuous cation exchanger. <i>Analytical Chemistry</i> , 1984 , 56, 96-103	7.8	19
176	Evaluation of Amount of Blood in Dry Blood Spots: Ring-Disk Electrode Conductometry. <i>Analytical Chemistry</i> , 2016 , 88, 6531-7	7.8	18
175	Flow batteries for microfluidic networks: configuring an electroosmotic pump for nonterminal positions. <i>Analytical Chemistry</i> , 2011 , 83, 2430-3	7.8	18
174	Oil Field Hydrogen Sulfide in Texas: 'Emission Estimates and Fate. <i>Environmental Science & Emp; Technology</i> , 1997 , 31, 3669-3676	10.3	18
173	Continuous collection of soluble atmospheric particles with a wetted hydrophilic filter. <i>Analytical Chemistry</i> , 2005 , 77, 8031-40	7.8	18
172	Liquid core waveguide-based optical spectrometry for field estimation of dissolved BTEX compounds in groundwater. <i>Analytica Chimica Acta</i> , 2003 , 485, 155-167	6.6	18
171	Design and development of a system to measure ambient levels of hydrogen sulfide and lower mercaptans from a mobile platform. <i>Atmospheric Environment</i> , 1995 , 29, 1291-1298	5.3	18
170	Ion chromatographic separation of anions with ion interaction reagents and an annular helical suppressor. <i>Analytical Chemistry</i> , 1984 , 56, 769-772	7.8	18
169	Functionalized Cycloolefin Polymer Capillaries for Open Tubular Ion Chromatography. <i>Analytical Chemistry</i> , 2016 , 88, 12013-12020	7.8	17
168	Multilayer chitosan-based open tubular capillary anion exchange column with integrated monolithic capillary suppressor. <i>Analytica Chimica Acta</i> , 2011 , 707, 210-7	6.6	17
167	Catalytic decomposition of hydrogen peroxide by a flow-through self-regulating platinum black heater. <i>Analytica Chimica Acta</i> , 2004 , 510, 9-13	6.6	17

166	Two-Dimensional detection in ion chromatography: sequential conductometry after suppression and passive hydroxide introduction. <i>Analytical Chemistry</i> , 2001 , 73, 4694-703	7.8	17
165	A Continuous Monitoring System for Strong Acidity in Aerosols. <i>Analytical Chemistry</i> , 1998 , 70, 2839-28	8 47 .8	17
164	Two-Dimensional Conductometric Detection in Ion Chromatography. Analyte Identification, Quantitation of Very Weak Acid Anions, and Universal Calibration. <i>Analytical Chemistry</i> , 1995 , 67, 2110	-2718	17
163	Flow injection and solvent extraction with intelligent segment separation. Determination of quaternary ammonium ions by ion-pairing. <i>Talanta</i> , 1992 , 39, 101-11	6.2	17
162	Two-dimensional conductometric detection in ion chromatography. Postsuppressor conversion of eluite acids to a salt. <i>Analytical Chemistry</i> , 1992 , 64, 3007-3012	7.8	17
161	A simple inexpensive gas phase chemiluminescence analyzer for measuring trace levels of arsenic in drinking water. <i>Environmental Pollution</i> , 2010 , 158, 252-7	9.3	16
160	Tailoring elution of tetraalkylammonium ions. Ideal electrostatic selectivity elution order on a polymeric ion exchanger. <i>Analytical Chemistry</i> , 2007 , 79, 769-72	7.8	16
159	Flow of multiple fluids in a small dimension. <i>Analytical Chemistry</i> , 2002 , 74, 208A-213A	7.8	16
158	Ion chromatographic determination of acidity. Analytical Chemistry, 2000, 72, 96-100	7.8	16
157	Electroosmotically pumped capillary format sequential injection analysis with a membrane sampling interface for gaseous analytes. <i>Analytica Chimica Acta</i> , 1995 , 308, 281-285	6.6	16
156	Ion exchange membranes in ion chromatography and related applications. <i>Talanta</i> , 2019 , 204, 89-137	6.2	15
155	Electrodialytic Capillary Suppressor for Open Tubular Ion Chromatography. <i>Analytical Chemistry</i> , 2016 , 88, 12021-12027	7.8	15
154	Expanding the linear dynamic range for quantitative liquid chromatography-high resolution mass spectrometry utilizing natural isotopologue signals. <i>Analytica Chimica Acta</i> , 2014 , 850, 65-70	6.6	15
153	Electrochemical arsine generators for arsenic determination. <i>Analytical Chemistry</i> , 2014 , 86, 7705-11	7.8	15
152	Temperature dependence of Henry's law constant for hydrogen cyanide. Generation of trace standard gaseous hydrogen cyanide. <i>Environmental Science & Environmental Science & E</i>	10.3	15
151	A permeable membrane capacitance sensor for ionogenic gases Application to the measurement of total organic carbon. <i>Analytica Chimica Acta</i> , 2009 , 652, 245-50	6.6	15
150	Measurement of soil/dust arsenic by gas phase chemiluminescence. <i>Talanta</i> , 2008 , 77, 372-9	6.2	15
149	A chemiluminescence-based continuous flow aqueous ozone analyzer using photoactivated chromotropic acid. <i>Talanta</i> , 2005 , 66, 823-30	6.2	15

(2011-2006)

148	Soap bubbles in analytical chemistry. Conductometric determination of sub-parts per million levels of sulfur dioxide with a soap bubble. <i>Analytical Chemistry</i> , 2006 , 78, 2786-93	7.8	15
147	A nanoinjector for microanalysis. <i>Analytical Chemistry</i> , 2003 , 75, 3919-23	7.8	15
146	Continuous on-line true titrations by feedback based flow ratiometry: application to potentiometric acidBase titrations. <i>Analytica Chimica Acta</i> , 2001 , 435, 289-297	6.6	15
145	Perfluorosulfonate ionomer-phosphorus pentoxide composite thin films as amperometric sensors for water. <i>Analytical Chemistry</i> , 1991 , 63, 1570-1573	7.8	15
144	Optical cells with partially reflecting windows as nonlinear absorbance amplifiers. <i>Analytical Chemistry</i> , 1987 , 59, 783-786	7.8	15
143	Polymethylmethacrylate open tubular ion exchange columns: nondestructive measurement of very small ion exchange capacities. <i>Analytical Chemistry</i> , 2013 , 85, 7994-8000	7.8	14
142	Direct current conductivity detection in ion chromatography. <i>Analytical Chemistry</i> , 1989 , 61, 1383-1387	7.8	14
141	A personal chlorine monitor utilizing permeation sampling. <i>Environmental Science & Environmental Scie</i>	10.3	14
140	Generatation and characterization of sodium sulfite aerosols for applications in inhalation toxicologic research. <i>AIHA Journal</i> , 1980 , 41, 660-5		14
139	Fluorometric determination of atmospheric sulfur dioxide without tetrachloromercurate(II). <i>Analytical Chemistry</i> , 1981 , 53, 2084-2087	7.8	14
138	Miniature open channel scrubbers for gas collection. <i>Talanta</i> , 2010 , 82, 1870-5	6.2	13
137	Gas collection efficiency of annular denuders: a spreadsheet-based calculator. <i>Analytica Chimica Acta</i> , 2010 , 664, 56-61	6.6	13
136	Electrochemical sensing of gases based on liquid collection interfaces. <i>Electroanalysis</i> , 1997 , 9, 585-591	3	13
135	Airborne bacterial spore counts by terbium-enhanced luminescence detection: pitfalls and real values. <i>Environmental Science & Environmental Science &</i>	10.3	13
134	Frequency-selective absorbance detection: Refractive index and turbidity compensation with dual-wavelength measurement. <i>Talanta</i> , 2006 , 69, 906-13	6.2	13
133	Two-dimensional conductometric detection in ion chromatography. Postsuppressor conversion of eluite acids to a base. <i>Analytical Chemistry</i> , 1991 , 63, 2175-2183	7.8	13
132	Fenton digestion of milk for iodinalysis. <i>Analytical Chemistry</i> , 2011 , 83, 8300-7	7.8	12
131	Controlled porosity monolithic material as permselective ion exchange membranes. <i>Analytica Chimica Acta</i> , 2011 , 689, 155-9	6.6	12

130	Postcolumn concentration in liquid chromatography. On-line eluent evaporation and analyte postconcentration in ion chromatography. <i>Analytical Chemistry</i> , 2007 , 79, 5690-7	7.8	12
129	Silver-induced enhancement of thiochrome-based peroxide measurements. <i>Analytical Chemistry</i> , 2003 , 75, 6753-8	7.8	12
128	Indoor Air Pollution and Sick Building Syndrome. Monitoring Aerosol Protein as a Measure of Bioaerosols. <i>Environmental Science & Environmental Scienc</i>	10.3	12
127	A planar microelectrodialytic NaOH generator for eluite conversion after suppressed conductometric detection in ion chromatography. <i>Analytica Chimica Acta</i> , 1999 , 384, 135-141	6.6	12
126	Artifact peroxides produced during cryogenic sampling of ambient air. <i>Geophysical Research Letters</i> , 1995 , 22, 2605-2608	4.9	12
125	Automated System for Chemical Analysis of Airborne Particles Based on Corona-Free Electrostatic Collection. <i>Analytical Chemistry</i> , 1996 , 68, 3638-3644	7.8	12
124	High sensitivity optical detection methods in hydroxide eluent suppressed anion chromatography via postsuppression ion exchange. <i>Analytical Chemistry</i> , 1987 , 59, 1963-1969	7.8	12
123	Dual Membrane Annular Hellical Suppressors in Ion Chromatography. <i>Analytical Chemistry</i> , 1985 , 57, 484-489	7.8	12
122	The polarographic reduction of some dinitroaniline herbicides. <i>Analytica Chimica Acta</i> , 1976 , 82, 29-35	6.6	12
121	Concurrent high-sensitivity conductometric detection of volatile weak acids in a suppressed anion chromatography system. <i>Analytical Chemistry</i> , 2015 , 87, 8342-6	7.8	11
120	Resolving DNA in free solution. <i>TrAC - Trends in Analytical Chemistry</i> , 2012 , 35, 122-134	14.6	11
119	Mixing characteristics of mixers in flow analysis. Application to two-dimensional detection in ion chromatography. <i>Analytical Chemistry</i> , 2015 , 87, 793-800	7.8	11
118	Effects of separation potential, hydrostatic pressure and auxiliary electroosmotic pumping on a suppressed conductometric capillary electrophoresis separation system. <i>Analytica Chimica Acta</i> , 1999 , 394, 1-12	6.6	11
117	Direct coupling of ion chromatography with suppressed conductometric capillary electrophoresis. <i>Journal of Separation Science</i> , 1996 , 8, 561-568		11
116	An air-carrier continuous analysis system. <i>Talanta</i> , 1989 , 36, 49-61	6.2	11
115	An airborne test of three sulfur dioxide measurement techniques. <i>Atmospheric Environment Part A General Topics</i> , 1990 , 24, 1903-1908		11
114	Studies on peak width measurement-based FIA acid-base determinations. <i>Mikrochimica Acta</i> , 1985 , 87, 49-64	5.8	11
113	Micro Ion Extractor for Single Drop Whole Blood Analysis. <i>Analytical Chemistry</i> , 2015 , 87, 6483-6	7.8	10

112	Electrodialytic matrix isolation for metal cations. <i>Talanta</i> , 2015 , 132, 228-33	6.2	10
111	Flow-Cell-Induced Dispersion in Flow-through Absorbance Detection Systems: True Column Effluent Peak Variance. <i>Analytical Chemistry</i> , 2018 , 90, 2063-2069	7.8	10
110	Relative source contributions for perchlorate exposures in a lactating human cohort. <i>Science of the Total Environment</i> , 2013 , 443, 939-43	10.2	10
109	pH- and concentration-programmable electrodialytic buffer generator. <i>Analytical Chemistry</i> , 2012 , 84, 59-66	7.8	10
108	Continuous on-line feedback based flow titrations. Complexometric titrations of calcium and magnesium. <i>Talanta</i> , 2003 , 60, 131-7	6.2	10
107	Measurement of acid dissociation constants of weak acids by cation exchange and conductometry. <i>Analytical Chemistry</i> , 1990 , 62, 1117-1122	7.8	10
106	Tubular microporous membrane entrapped enzyme reactors for flow injection analysis. <i>Analytical Chemistry</i> , 1987 , 59, 1356-1360	7.8	10
105	Permeative Amine Introduction for Very Weak Acid Detection in Ion Chromatography. <i>Analytical Chemistry</i> , 2016 , 88, 2198-204	7.8	10
104	Ion exchange column capacities. Predicting retention behavior of open tubular columns coated with the same phase. <i>Journal of Chromatography A</i> , 2018 , 1550, 75-79	4.5	9
103	Tutorial: simulating chromatography with Microsoft Excel Macros. <i>Analytica Chimica Acta</i> , 2013 , 773, 1-8	6.6	9
102	Automated Programmable Preparation of Carbonate-Bicarbonate Eluents for Ion Chromatography with Pressurized Carbon Dioxide. <i>Analytical Chemistry</i> , 2017 , 89, 10063-10070	7.8	9
101	Electrodialytic membrane suppressors for ion chromatography make programmable buffer generators. <i>Analytical Chemistry</i> , 2012 , 84, 67-75	7.8	9
100	Doped soap membranes selectively permeate a chiral isomer. <i>Journal of the American Chemical Society</i> , 2010 , 132, 18045-7	16.4	9
99	Collection of atmospheric gases in a liquid film suspended on a loop: Determination of formic and acetic acids by exhaustive electromigration injection capillary electrophoresis. <i>Journal of Separation Science</i> , 1998 , 10, 265-271		9
98	Measurement of phenols on a loop-supported liquid film by micellar electrokinetic chromatography and direct UV detection. <i>Journal of Chromatography A</i> , 1996 , 739, 379-87	4.5	9
97	Inlet pressure effects on the collection efficiency of diffusion scrubbers. <i>Environmental Science & Environmental & Environme</i>	10.3	9
96	Positive-signal indirect fluorometric detection in ion chromatography. <i>Analytical Chemistry</i> , 1987 , 59, 1362-1364	7.8	9
95	Capillary Scale Admittance and Conductance Detection. <i>Analytical Chemistry</i> , 2018 , 90, 14561-14568	7.8	9

94	Width Based Quantitation of Chromatographic Peaks: Principles and Principal Characteristics. <i>Analytical Chemistry</i> , 2017 , 89, 3884-3892	7.8	8
93	Nanovolume Gas-Free Hydroxide Eluent Generator for Open Tubular Ion Chromatography. <i>Analytical Chemistry</i> , 2020 , 92, 5561-5568	7.8	8
92	Water ICE: Ion Exclusion Chromatography of Very Weak Acids with a Pure Water Eluent. <i>Analytical Chemistry</i> , 2016 , 88, 4965-70	7.8	8
91	What can in situ ion chromatography offer for Mars exploration?. Astrobiology, 2014, 14, 577-88	3.7	8
90	Confeito-like assembly of organosilicate-caged fluorophores: ultrabright suprananoparticles for fluorescence imaging. <i>Nanotechnology</i> , 2012 , 23, 175601	3.4	8
89	Electrodialytic reagent introduction in flow systems. <i>Analytical Chemistry</i> , 2010 , 82, 3981-4	7.8	8
88	Monitoring and Source Apportionment of Fine Particulate Matter at Lindon, Utah. <i>Aerosol Science and Technology</i> , 2006 , 40, 941-951	3.4	8
87	Measurement of parts per million levels of potassium hydroxide in polyether polyol streams. <i>Analytica Chimica Acta</i> , 2001 , 429, 101-110	6.6	8
86	Chapter 5 Automated diffusion-based collection and measurement of atmospheric trace gases. <i>Comprehensive Analytical Chemistry</i> , 2002 , 97-160	1.9	8
85	Enhancement of Separation Efficiency in Capillary Electrophoresis by Electrostacking without Liquid Contact. <i>Analytical Chemistry</i> , 1996 , 68, 1933-40	7.8	8
84	Spectrophotometric determination of H(2)O(2) with 1-anilinonaphthalene-8-sulfonic acid and 4-aminoantipyrine with hematin as catalyst. <i>Talanta</i> , 1993 , 40, 981-8	6.2	8
83	Voltammetric sensor for determination of water in liquids. <i>Analytical Chemistry</i> , 1992 , 64, 2406-12	7.8	8
82	Sorbent isolation and elution with an immiscible eluent in flow injection analysis. <i>Analytical Chemistry</i> , 1989 , 61, 496-499	7.8	8
81	Membrane-based flow injection system for determination of sulfur(IV) in atmospheric water. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	8
80	An annular dual-membrane continuous cation exchanger packed with ion exchange resin. <i>Journal of Membrane Science</i> , 1986 , 27, 31-40	9.6	8
79	Spectrophotometric determination of trace sulfate in water. <i>Analytical Chemistry</i> , 1978 , 50, 1793-1795	7.8	8
78	Width Based Characterization of Chromatographic Peaks: Beyond Height and Area. <i>Analytical Chemistry</i> , 2017 , 89, 3893-3900	7.8	7
77	Enigmatic ion-exchange behavior of myo-inositol phosphates. <i>Analytical Chemistry</i> , 2015 , 87, 4851-5	7.8	7

76	Characterization of ion exchange functionalized cyclic olefin polymer open tubular columns. <i>Analytica Chimica Acta</i> , 2018 , 1036, 187-194	6.6	7
75	Breastfed infants metabolize perchlorate. Environmental Science & amp; Technology, 2012, 46, 5151-9	10.3	7
74	Perchlorate: a cause for iodine deficiency?. Environmental Chemistry, 2009, 6, 7	3.2	7
73	Ion exchange resin bead decoupled high-pressure electroosmotic pump. <i>Analytical Chemistry</i> , 2009 , 81, 5102-6	7.8	7
72	Automated particle collection and analysis. Near-real time measurement of aerosol cerium (III). <i>Analytica Chimica Acta</i> , 1998 , 361, 151-159	6.6	7
71	Environmental Applications: Atmospheric Trace Gas Analyses. <i>Comprehensive Analytical Chemistry</i> , 2008 , 639-683	1.9	7
70	An energy-efficient self-regulating heater for flow-through applications. <i>Analytical Chemistry</i> , 2003 , 75, 3924-8	7.8	7
69	Pulsed reagent introduction through a membrane reactor for flow-injection systems. <i>Analytica Chimica Acta</i> , 1988 , 215, 277-282	6.6	7
68	A Self-Coupling Diazotizing Reagent for Nitrite. <i>Analytical Letters</i> , 1984 , 17, 1005-1008	2.2	7
67	Flow injection analysis of trace hydrogen peroxide using an immobilized enzyme reactor. <i>Mikrochimica Acta</i> , 1985 , 87, 77-87	5.8	7
66	Determination of acids, bases, metal ions and redox species by peak width measurement flow injection analysis with potentiometric, conductometric, fluorometric and spectrophotometric detection. <i>Mikrochimica Acta</i> , 1985 , 87, 107-122	5.8	7
65	Study of bisulfite and metabisulfite aerosol generation systems. AIHA Journal, 1980 , 41, 666-71		7
64	Automated programmable pressurized carbonic acid eluent ion exclusion chromatography of organic acids. <i>Journal of Chromatography A</i> , 2017 , 1523, 300-308	4.5	6
63	Cavity-enhanced absorption measurements across broad absorbance and reflectivity ranges. <i>Analytical Chemistry</i> , 2014 , 86, 3727-34	7.8	6
62	Admittance Scanning for Whole Column Detection. <i>Analytical Chemistry</i> , 2017 , 89, 7203-7209	7.8	6
61	A microfabricated amperometric moisture sensor. <i>Talanta</i> , 2002 , 56, 309-21	6.2	6
60	A simple instrument for ultraviolet-visible absorption spectrophotometry in high temperature molten salt media. <i>Review of Scientific Instruments</i> , 2000 , 71, 2283-2287	1.7	6
59	Collection of Micrometer and Submicrometer Size Aerosol Particles with a Packed Bead Impactor. <i>Microchemical Journal</i> , 1999 , 62, 50-57	4.8	6

58	Airship Measurements of Hydrogen Peroxide and Related Parameters in the Marine Atmosphere Along the Western U.S. Coast. <i>Microchemical Journal</i> , 1999 , 62, 99-113	4.8	6
57	Improving Resolution in Capillary Zone Electrophoresis through Bulk Flow Control. <i>Microchemical Journal</i> , 1999 , 62, 128-137	4.8	6
56	Novel automated micro batch analyzer. Review of Scientific Instruments, 1988, 59, 2609-2615	1.7	6
55	Optimum Cell Pathlength or Volume for Absorbance Detection in Liquid Chromatography: Transforming Longer Cell Results to Virtual Shorter Cells. <i>Analytical Chemistry</i> , 2020 , 92, 6391-6400	7.8	6
54	Continuous measurement of elemental composition of ambient aerosol by induction-coupled plasma mass spectrometry. <i>Talanta</i> , 2018 , 177, 197-202	6.2	6
53	Carbonic Acid Eluent Ion Chromatography. <i>Analytical Chemistry</i> , 2019 , 91, 3636-3644	7.8	5
52	Inline Shunt Flow Monitor for Hydrocephalus. <i>Analytical Chemistry</i> , 2017 , 89, 8170-8176	7.8	5
51	Anion composition of a⊞extracts. <i>Journal of Agricultural and Food Chemistry</i> , 2013 , 61, 5928-35	5.7	5
50	Chromatography on water-ice. <i>Analytical Chemistry</i> , 1997 , 69, 4079-81	7.8	5
49	Response to Comment on P erchlorate and Iodide in Dairy and Breast Milk[[Environmental Science & amp; Technology, 2005 , 39, 5499-5500	10.3	5
48	Response to Comment on P erchlorate and Iodide in Dairy and Breast Milk[[Environmental Science & amp; Technology, 2005 , 39, 5902-5903	10.3	5
47	Determination of acid dissociation constants based on continuous titration by feedback-based flow ratiometry. <i>Talanta</i> , 2004 , 64, 1169-74	6.2	5
46	An electrostatic micro-collection interface for aerosol collection. Automated ion Chromatographic analysis of aerosols. <i>Talanta</i> , 1996 , 43, 1681-8	6.2	5
45	Identification of ions in anion chromatography by stopped flow chronoamperometry. <i>Analytical Chemistry</i> , 1989 , 61, 1387-1392	7.8	5
44	Automated determination of total phosphorus in aqueous samples. <i>Talanta</i> , 1991 , 38, 133-7	6.2	5
43	Versatile instrument for pulse width measurement. <i>Analytical Chemistry</i> , 1986 , 58, 507-509	7.8	5
42	A ring oven method for the determination of sulfate at nanogram levels. <i>Mikrochimica Acta</i> , 1978 , 70, 505-510	5.8	5
41	Inline flow sensor for ventriculoperitoneal shunts: Experimental evaluation in swine. <i>Medical Engineering and Physics</i> , 2019 , 67, 66-72	2.4	4

40	Attenuation Coefficients of Tubular Conduits for Liquid Phase Absorbance Measurement: Shot Noise Limited Optimum Path Length. <i>Analytical Chemistry</i> , 2019 , 91, 9481-9489	7.8	4
39	Time-of-Sight Liquid Flow Measurements in the Low Nanoliters per Minute Scale. <i>Analytical Chemistry</i> , 2019 , 91, 14332-14339	7.8	4
38	Nonlinear absorbance amplification using a diffuse reflectance cell: total organic carbon monitoring at 214 nm. <i>Analytical Chemistry</i> , 2015 , 87, 1111-7	7.8	4
37	Comment on Hydrofluoric Acid in the Southern California Atmospherell <i>Environmental Science & Environmental & Environm</i>	10.3	4
36	Determination of dissociation constants of weak acids by feedback-based flow ratiometry. <i>Analytica Chimica Acta</i> , 2003 , 499, 199-204	6.6	4
35	Determination of oxidative stability of lipids in solid samples. <i>JAOCS, Journal of the American Oil ChemistsoSociety</i> , 2000 , 77, 217-222	1.8	4
34	Concentration and Optical Measurement of Aqueous Analytes in an Organic Solvent Segmented Capillary under High Electric Field. <i>Analytical Chemistry</i> , 1994 , 66, 3997-4004	7.8	4
33	Measurement of Trace Levels of Atmospheric Sulfur Dioxide with a Gold Film Sensor. <i>Japca</i> , 1989 , 39, 975-980		4
32	Determination of urinary mercury with an automated micro batch analyzer. <i>Analytical Chemistry</i> , 1990 , 62, 85-8	7.8	4
31	An automated sequential injection analysis system for the determination of trace endotoxin levels in water. <i>PDA Journal of Pharmaceutical Science and Technology</i> , 2003 , 57, 12-24	0.6	4
30	Transient Ion-Pair Separations for Electrospray Mass Spectrometry. <i>Analytical Chemistry</i> , 2016 , 88, 2059	9- 5 .\$	3
29	Characterization of a constant current charge detector. <i>Talanta</i> , 2012 , 102, 44-52	6.2	3
28	An affordable high-performance pumping system for gradient capillary liquid chromatography. Journal of Separation Science, 1999 , 11, 299-304		3
27	Solvent extraction in continuous flow systems with intelligent zone sampling. <i>Analytica Chimica Acta</i> , 1989 , 222, 255-269	6.6	3
26	Viscosity Detection with a Pulseless PUMP for Liquid Chromatography. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1984 , 7, 2367-2382		3
25	Spectrophotometric determination of trace aqueous sulfate using barium-beryllon II. <i>Mikrochimica Acta</i> , 1985 , 85, 313-324	5.8	3
24	Structure elucidation of polynitrated 2-aminoperimidines. <i>Journal of Organic Chemistry</i> , 1979 , 44, 2582-	-2 <u>5</u> 85	3
23	Direct Photothermal Measurement of Optical Absorption in a Flow System. <i>Analytical Chemistry</i> , 2019 , 91, 2923-2931	7.8	3

22	Conductometric Gradient Ion Exclusion Chromatography for Volatile Fatty Acids. <i>Analytical Chemistry</i> , 2016 , 88, 12323-12329	7.8	2
21	Semicontinuous automated measurement of organic carbon in atmospheric aerosol samples. <i>Analytical Chemistry</i> , 2010 , 82, 1334-41	7.8	2
20	Fast voltammetric sensors for the measurement of soil water activity. <i>Electroanalysis</i> , 1995 , 7, 626-632	3	2
19	Analyte identification in ion chromatography Electromigration governed chronoamperometric profiles. <i>Analytica Chimica Acta</i> , 1993 , 284, 27-36	6.6	2
18	Measurement of mercaptans in gasoline. <i>Mikrochimica Acta</i> , 1989 , 99, 35-41	5.8	2
17	Microtitration of Sulfate with Beryllon II as indicator: Determination of sulfate in environmental samples. <i>Mikrochimica Acta</i> , 1984 , 83, 159-168	5.8	2
16	Exploiting adduct formation through an auxiliary spray in liquid chromatography-electrospray ionization mass spectrometry to improve charge-carrier identification. <i>Journal of Chromatography A</i> , 2020 , 1632, 461601	4.5	2
15	Moldable Strong Cation Exchange Polymer and Microchannel Fabrication. <i>Analytical Chemistry</i> , 2020 , 92, 13378-13386	7.8	2
14	Gradient nanopump based suppressed ion chromatography using PEEK open tubular columns. <i>Talanta Open</i> , 2021 , 3, 100029	5.6	2
13	Rapid nondestructive spectrometric measurement of temperature-dependent gas-liquid solubility equilibria. <i>Analytical Chemistry</i> , 2011 , 83, 1157-61	7.8	1
12	Response to Comment on Intake of Iodine and Perchlorate and Excretion in Human Milk. <i>Environmental Science & Environmental Sc</i>	10.3	1
11	A time-gated fluorescence detector using a tuning fork chopper. <i>Analytica Chimica Acta</i> , 2008 , 616, 63-8	36.6	1
10	Automated Low-Pressure Carbonate Eluent Ion Chromatography System with Postsuppressor Carbon Dioxide Removal for the Analysis of Atmospheric Gases and Particles. <i>Aerosol Science and Technology</i> , 2005 , 39, 1072-1084	3.4	1
9	Multicomponent determinations by a membrane-discriminated gas phase analyzer and successive regression in the fiduciary region. <i>Journal of Chemometrics</i> , 1989 , 3, 601-608	1.6	1
8	Inexpensive automated electropneumatic syringe dispenser. <i>Analytica Chimica Acta</i> , 1989 , 221, 189-193	6.6	1
7	Shape-Based Peak Identity Confirmation in Liquid Chromatography. <i>Analytical Chemistry</i> , 2021 , 93, 3848	3 - 2 8 56	1
6	Electroosmosis-Driven Flow Analysis127-148		1
5	Automated Programmable Generation of Broad pH Range Volatile Ionic Eluents for Liquid Chromatography. <i>Analytical Chemistry</i> , 2021 , 93, 5442-5450	7.8	O

LIST OF PUBLICATIONS

4	Moldable capillary suppressor for open tubular ion chromatography based on a polymeric ion exchanger <i>Talanta Open</i> , 2021 , 4, 100062	5.6	О
3	Comment on "Rapid visual detection of blood cyanide" by C. Mlinel-Croisland F. Zelder, , 2012, 4, 2632. <i>Analytical Methods</i> , 2015 , 7, 5707-5711	3.2	
2	Effects of alternating electric fields on transport through ion exchange membranes. <i>Electroanalysis</i> , 1991 , 3, 783-792	3	
1	Two Automated Methods for Measuring Trace Levels of Sulfur Dioxide Using Translation Reactions. <i>ACS Symposium Series</i> , 1989 , 380-401	0.4	