Daisuke Watanabe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6621587/publications.pdf

Version: 2024-02-01

68 papers 1,605 citations

304368 22 h-index 37 g-index

72 all docs 72 docs citations

72 times ranked 1604 citing authors

#	Article	IF	CITATIONS
1	Whole-Genome Sequencing of Sake Yeast Saccharomyces cerevisiae Kyokai no. 7. DNA Research, 2011, 18, 423-434.	1.5	150
2	Dissection of Upstream Regulatory Components of the Rho1p Effector, 1,3-β-Glucan Synthase, inSaccharomyces cerevisiae. Genetics, 2002, 162, 663-676.	1.2	112
3	SCMD: Saccharomyces cerevisiae Morphological Database. Nucleic Acids Research, 2004, 32, 319D-322.	6.5	84
4	Movement of yeast $1,3-\hat{l}^2$ -glucan synthase is essential for uniform cell wall synthesis. Genes To Cells, 2002, 7, 1-9.	0.5	82
5	A Loss-of-Function Mutation in the PAS Kinase Rim15p Is Related to Defective Quiescence Entry and High Fermentation Rates of Saccharomyces cerevisiae Sake Yeast Strains. Applied and Environmental Microbiology, 2012, 78, 4008-4016.	1.4	77
6	Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production. Journal of Bioscience and Bioengineering, 2012, 113, 451-455.	1.1	73
7	Yeast Lrg1p acts as a specialized RhoGAP regulating 1,3-?-glucan synthesis. Yeast, 2001, 18, 943-951.	0.8	69
8	Enhancement of the Initial Rate of Ethanol Fermentation Due to Dysfunction of Yeast Stress Response Components Msn2p and/or Msn4p. Applied and Environmental Microbiology, 2011, 77, 934-941.	1.4	62
9	Comprehensive and quantitative analysis of yeast deletion mutants defective in apical and isotropic bud growth. Current Genetics, 2009, 55, 365-380.	0.8	50
10	Overexpression of MSN2 in a sake yeast strain promotes ethanol tolerance and increases ethanol production in sake brewing. Journal of Bioscience and Bioengineering, 2009, 107, 516-518.	1.1	48
11	An organic acid-tolerant HAA1-overexpression mutant of an industrial bioethanol strain of Saccharomyces cerevisiae and its application to the production of bioethanol from sugarcane molasses. AMB Express, 2013, 3, 74.	1.4	39
12	Accelerated Alcoholic Fermentation Caused by Defective Gene Expression Related to Glucose Derepression in Saccharomyces cerevisiae. Bioscience, Biotechnology and Biochemistry, 2013, 77, 2255-2262.	0.6	34
13	Sake yeast strains have difficulty in entering a quiescent state after cell growth cessation. Journal of Bioscience and Bioengineering, 2011, 112, 44-48.	1.1	29
14	Association of Constitutive Hyperphosphorylation of Hsf1p with a Defective Ethanol Stress Response in Saccharomyces cerevisiae Sake Yeast Strains. Applied and Environmental Microbiology, 2012, 78, 385-392.	1.4	28
15	Inhibitory Role of Greatwall-Like Protein Kinase Rim15p in Alcoholic Fermentation via Upregulating the UDP-Glucose Synthesis Pathway in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2016, 82, 340-351.	1.4	28
16	Isolation of baker's yeast mutants with proline accumulation that showed enhanced tolerance to baking-associated stresses. International Journal of Food Microbiology, 2016, 238, 233-240.	2.1	27
17	Nitric oxide signaling and its role in oxidative stress response in Schizosaccharomyces pombe. Nitric Oxide - Biology and Chemistry, 2016, 52, 29-40.	1.2	27
18	High-level production of valine by expression of the feedback inhibition-insensitive acetohydroxyacid synthase in Saccharomyces cerevisiae. Metabolic Engineering, 2018, 46, 60-67.	3.6	26

#	Article	IF	CITATIONS
19	Phenotypic Diagnosis of Lineage and Differentiation During Sake Yeast Breeding. G3: Genes, Genomes, Genetics, 2017, 7, 2807-2820.	0.8	25
20	Involvement of methionine salvage pathway genes of Saccharomyces cerevisiae inÂthe production of precursor compounds of dimethyl trisulfide (DMTS). Journal of Bioscience and Bioengineering, 2013, 116, 475-479.	1.1	23
21	Regulatory mechanism of the flavoprotein Tah18-dependent nitric oxide synthesis and cell death in yeast. Nitric Oxide - Biology and Chemistry, 2016, 57, 85-91.	1.2	23
22	Metabolic switching of sake yeast by kimoto lactic acid bacteria through theÂ[GAR] non-genetic element. Journal of Bioscience and Bioengineering, 2018, 126, 624-629.	1.1	23
23	Automatic measurement of sake fermentation kinetics using a multi-channel gas monitor system. Journal of Bioscience and Bioengineering, $2011,112,54-57.$	1.1	20
24	Ethanol fermentation driven by elevated expression of the G1 cyclin gene CLN3 in sake yeast. Journal of Bioscience and Bioengineering, 2011, 112, 577-582.	1.1	20
25	Finding of thiosulfate pathway for synthesis of organic sulfur compounds in Saccharomyces cerevisiae and improvement of ethanol production. Journal of Bioscience and Bioengineering, 2015, 120, 666-669.	1.1	19
26	Sake yeast YHR032W/ERC1 haplotype contributes to high S-adenosylmethionine accumulation in sake yeast strains. Journal of Bioscience and Bioengineering, 2017, 123, 8-14.	1.1	18
27	Exogenous addition of histidine reduces copper availability in the yeast Saccharomyces cerevisiae. Microbial Cell, 2014, 1, 241-246.	1.4	18
28	Valine biosynthesis in Saccharomyces cerevisiae is regulated by the mitochondrial branched-chain amino acid aminotransferase Bat1. Microbial Cell, 2018, 5, 293-299.	1.4	18
29	Proline metabolism regulates replicative lifespan in the yeast Saccharomyces cerevisiae. Microbial Cell, 2019, 6, 482-490.	1.4	18
30	Vacuolar amino acid transporters upregulated by exogenous proline and involved in cellular localization of proline in <i>Saccharomyces cerevisiae</i> . Journal of General and Applied Microbiology, 2016, 62, 132-139.	0.4	17
31	Promoter engineering of the Saccharomyces cerevisiae RIM15 gene for improvement of alcoholic fermentation rates under stress conditions. Journal of Bioscience and Bioengineering, 2017, 123, 183-189.	1.1	17
32	Genome Editing to Generate Sake Yeast Strains with Eight Mutations That Confer Excellent Brewing Characteristics. Cells, 2021, 10, 1299.	1.8	17
33	Rim15p-mediated regulation of sucrose utilization during molasses fermentation using Saccharomyces cerevisiae strain PE-2. Journal of Bioscience and Bioengineering, 2013, 116, 591-594.	1.1	16
34	Nutrient Signaling via the TORC1-Greatwall-PP2A ^{B55Î} Pathway Is Responsible for the High Initial Rates of Alcoholic Fermentation in Sake Yeast Strains of Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2019, 85, .	1.4	16
35	Quality Control of Plasma Membrane Proteins by Saccharomyces cerevisiae Nedd4-Like Ubiquitin Ligase Rsp5p under Environmental Stress Conditions. Eukaryotic Cell, 2014, 13, 1191-1199.	3.4	15
36	Isolation and functional analysis of yeast ubiquitin ligase Rsp5 variants that alleviate the toxicity of human \hat{l}_{\pm} -synuclein. Journal of Biochemistry, 2015, 157, 251-260.	0.9	15

#	Article	IF	CITATIONS
37	Defective quiescence entry promotes the fermentation performance of bottom-fermenting brewer's yeast. Journal of Bioscience and Bioengineering, 2016, 122, 577-582.	1.1	15
38	Characterization of a New Saccharomyces cerevisiae Isolated From Hibiscus Flower and Its Mutant With L-Leucine Accumulation for Awamori Brewing. Frontiers in Genetics, 2019, 10, 490.	1.1	15
39	Cell shape and growth of budding yeast cells in restrictive microenvironments. Yeast, 2004, 21, 983-989.	0.8	14
40	Isolation and characterization of awamori yeast mutants with l-leucine accumulation that overproduce isoamyl alcohol. Journal of Bioscience and Bioengineering, 2015, 119, 140-147.	1.1	14
41	Accumulation of intracellular S-adenosylmethionine increases the fermentation rate of bottom-fermenting brewer's yeast during high-gravity brewing. Journal of Bioscience and Bioengineering, 2018, 126, 736-741.	1.1	13
42	Pleiotropic functions of the yeast Greatwall-family protein kinase Rim15p: a novel target for the control of alcoholic fermentation. Bioscience, Biotechnology and Biochemistry, 2017, 81, 1061-1068.	0.6	11
43	Involvement of the stress-responsive transcription factor gene MSN2 in the control of amino acid uptake in Saccharomyces cerevisiae. FEMS Yeast Research, 2019, 19, .	1.1	11
44	Meiotic chromosomal recombination defect in sake yeasts. Journal of Bioscience and Bioengineering, 2019, 127, 190-196.	1.1	11
45	Bacterial inducible expression of plant cell wall-binding protein YesO through conflict between Glycine max and saprophytic Bacillus subtilis. Scientific Reports, 2020, 10, 18691.	1.6	10
46	Putative mitochondrial α-ketoglutarate-dependent dioxygenase Fmp12 controls utilization of proline as an energy source in Saccharomyces cerevisiae. Microbial Cell, 2016, 3, 522-528.	1.4	10
47	Cooperative and selective roles of the WW domains of the yeast Nedd4-like ubiquitin ligase Rsp5 in the recognition of the arrestin-like adaptors Bul1 and Bul2. Biochemical and Biophysical Research Communications, 2015, 463, 76-81.	1.0	9
48	γâ€Glutamyl kinase is involved in selective autophagy of ribosomes in <i>Saccharomyces cerevisiae</i> FEBS Letters, 2016, 590, 2906-2914.	1.3	9
49	Enhanced sodium acetate tolerance in Saccharomyces cerevisiae by the Thr255Ala mutation of the ubiquitin ligase Rsp5. FEMS Yeast Research, 2017, 17, .	1.1	9
50	Sodium Acetate Responses in Saccharomyces cerevisiae and the Ubiquitin Ligase Rsp5. Frontiers in Microbiology, 2018, 9, 2495.	1.5	9
51	Calcineurin inhibitors suppress the high-temperature stress sensitivity of the yeast ubiquitin ligase Rsp5 mutant: a new method of screening for calcineurin inhibitors. FEMS Yeast Research, 2014, 14, 567-574.	1.1	8
52	Yeast prion-based metabolic reprogramming induced by bacteria in fermented foods. FEMS Yeast Research, 2019, 19, .	1.1	8
53	Screening of High-Level 4-Hydroxy-2 (or 5)-Ethyl-5 (or 2)-Methyl-3(2 <i>H</i>)-Furanone-Producing Strains from a Collection of Gene Deletion Mutants of Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2015, 81, 453-460.	1.4	7
54	Awa1p on the cell surface of sake yeast inhibits biofilm formation and the co-aggregation between sake yeasts and Lactobacillus plantarum ML11-11. Journal of Bioscience and Bioengineering, 2015, 119, 532-537.	1.1	6

#	Article	IF	CITATIONS
55	Structure-based molecular design for thermostabilization of N-acetyltransferase Mpr1 involved in a novel pathway of l-arginine synthesis in yeast. Journal of Biochemistry, 2016, 159, 271-277.	0.9	5
56	Effect of the deubiquitination enzyme gene UBP6 on the stress-responsive transcription factor Msn2-mediated control of the amino acid permease Gnp1 in yeast. Journal of Bioscience and Bioengineering, 2020, 129, 423-427.	1.1	5
57	Importance of Proteasome Gene Expression during Model Dough Fermentation after Preservation of Baker's Yeast Cells by Freezing. Applied and Environmental Microbiology, 2018, 84, .	1.4	4
58	Stable <i>N</i> -acetyltransferase Mpr1 improves ethanol productivity in the sake yeast <i>Saccharomyces cerevisiae</i> . Journal of Industrial Microbiology and Biotechnology, 2019, 46, 1039-1045.	1.4	4
59	Loss of Rim15p in shochu yeast alters carbon utilization during barley shochu fermentation. Bioscience, Biotechnology and Biochemistry, 2019, 83, 1594-1597.	0.6	3
60	The sake yeast YHRO32W/ERC1 allele contributes to the regulation of the tetrahydrofolate content in the folate synthetic pathway in sake yeast strains. Bioscience, Biotechnology and Biochemistry, 2020, 84, 1073-1076.	0.6	2
61	Polyunsaturated fatty acids-enriched lipid from reduced sugar alcohol mannitol by marine yeast Rhodosporidiobolus fluvialis Y2. Biochemical and Biophysical Research Communications, 2020, 526, 1138-1142.	1.0	2
62	Mechanism of High Alcoholic Fermentation Ability of Sake Yeast., 2015, , 59-75.		2
63	The C2 domain of the ubiquitin ligase Rsp5 is required for ubiquitination of the endocytic protein Rvs167 upon change of nitrogen source. FEMS Yeast Research, 2020, 20, .	1.1	2
64	How Has Sake Yeast Acquired High Alcohol Fermentation Ability?. Kagaku To Seibutsu, 2012, 50, 723-729.	0.0	0
65	Screening of High-level 4-Hydroxy-2(or 5)-Ethyl-5(or 2)-Methyl-3(2 <i>H</i>)-Furanone-Producing Strains from a Collection of Gene Deletion Mutants of <i>Saccharomyces cerevisiae.</i>). Journal of the Brewing Society of Japan, 2015, 110, 840-848.	0.1	0
66	<i>RIM15</i> , a Kyokai Sake Yeast-specific Mutated Gene Associated with the High Alcoholic Fermentation Performance. Journal of the Brewing Society of Japan, 2016, 111, 638-647.	0.1	0
67	Characterization and Potential Application of Substrate-Specific Recognition by the Yeast Ubiquitin Ligase Rsp5: To Prevent Ubiquitin "Missending― Kagaku To Seibutsu, 2018, 57, 36-42.	0.0	0
68	Crystal structures of EfeB and EfeO in a bacterial siderophore-independent iron transport system. Biochemical and Biophysical Research Communications, 2022, 594, 124-130.	1.0	0