
Javier Moraga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/662125/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The <i>Botrytis cinerea</i> phytotoxin botcinic acid requires two polyketide synthases for production and has a redundant role in virulence with botrydial. Molecular Plant Pathology, 2011, 12, 564-579.	2.0	189
2	Overexpression of the trichodiene synthase gene tri5 increases trichodermin production and antimicrobial activity in Trichoderma brevicompactum. Fungal Genetics and Biology, 2011, 48, 285-296.	0.9	110
3	Natural Variation in the VELVET Gene bcvel1 Affects Virulence and Light-Dependent Differentiation in Botrytis cinerea. PLoS ONE, 2012, 7, e47840.	1.1	89
4	The <i>Botrytis cinerea</i> Reg1 Protein, a Putative Transcriptional Regulator, Is Required for Pathogenicity, Conidiogenesis, and the Production of Secondary Metabolites. Molecular Plant-Microbe Interactions, 2011, 24, 1074-1085.	1.4	85
5	The botrydial biosynthetic gene cluster of Botrytis cinerea displays a bipartite genomic structure and is positively regulated by the putative Zn(II)2Cys6 transcription factor BcBot6. Fungal Genetics and Biology, 2016, 96, 33-46.	0.9	60
6	Botcinic acid biosynthesis in Botrytis cinerea relies on a subtelomeric gene cluster surrounded by relics of transposons and is regulated by the Zn2Cys6 transcription factor BcBoa13. Current Genetics, 2019, 65, 965-980.	0.8	57
7	Biodegradation and toxicity reduction of nonylphenol, 4-tert-octylphenol and 2,4-dichlorophenol by the ascomycetous fungus Thielavia sp HJ22: Identification of fungal metabolites and proposal of a putative pathway. Science of the Total Environment, 2020, 708, 135129.	3.9	47
8	Overexpression of the Trichoderma brevicompactum tri5 Gene: Effect on the Expression of the Trichodermin Biosynthetic Genes and on Tomato Seedlings. Toxins, 2011, 3, 1220-1232.	1.5	45
9	A GC–MS untargeted metabolomics approach for the classification of chemical differences in grape juices based on fungal pathogen. Food Chemistry, 2019, 270, 375-384.	4.2	38
10	Genetic and Molecular Basis of Botrydial Biosynthesis: Connecting Cytochrome P450-Encoding Genes to Biosynthetic Intermediates. ACS Chemical Biology, 2016, 11, 2838-2846.	1.6	30
11	The current status on secondary metabolites produced by plant pathogenic Colletotrichum species. Phytochemistry Reviews, 2019, 18, 215-239.	3.1	29
12	Chemically Induced Cryptic Sesquiterpenoids and Expression of Sesquiterpene Cyclases in <i>Botrytis cinerea</i> Revealed New Sporogenic (+)-4- <i>Epi</i> eremophil-9-en-11-ols. ACS Chemical Biology, 2016, 11, 1391-1400.	1.6	20
13	Relevance of the deletion of the <i>Tatri4</i> gene in the secondary metabolome of <i>Trichoderma arundinaceum</i> . Organic and Biomolecular Chemistry, 2018, 16, 2955-2965.	1.5	18
14	Botrylactone: new interest in an old molecule—review of its absolute configuration and related compounds. Tetrahedron, 2011, 67, 417-420.	1.0	17
15	Botrydial and botcinins produced by <scp><i>B</i></scp> <i>otrytis cinerea</i> regulate the expression of <scp><i>T</i></scp> <i>richoderma arundinaceum</i> genes involved in trichothecene biosynthesis. Molecular Plant Pathology, 2016, 17, 1017-1031.	2.0	14
16	A Shared Biosynthetic Pathway for Botcinins and Botrylactones Revealed through Gene Deletions. ChemBioChem, 2013, 14, 132-136.	1.3	13
17	Natural Compounds That Modulate the Development of the Fungus Botrytis cinerea and Protect Solanum lycopersicum. Plants, 2019, 8, 111.	1.6	13
18	Structural and biosynthetic studies on eremophilenols related to the phytoalexin capsidiol, produced by Botrytis cinerea. Phytochemistry, 2018, 154, 10-18.	1.4	10

JAVIER MORAGA

0

#	Article	IF	CITATIONS
19	Botrydial confers Botrytis cinerea the ability to antagonize soil and phyllospheric bacteria. Fungal Biology, 2020, 124, 54-64.	1.1	9
20	The formation of sesquiterpenoid presilphiperfolane and cameroonane metabolites in the Bcbot4 null mutant of Botrytis cinerea. Organic and Biomolecular Chemistry, 2017, 15, 5357-5363.	1.5	8
21	The sesquiterpene botrydial from Botrytis cinerea induces phosphatidic acid production in tomato cell suspensions. Planta, 2018, 247, 1001-1009.	1.6	8
22	Phenotypic Effects and Inhibition of Botrydial Biosynthesis Induced by Different Plant-Based Elicitors in Botrytis cinerea. Current Microbiology, 2018, 75, 431-440.	1.0	8
23	Impairment of botrydial production in Botrytis cinerea allows the isolation of undescribed polyketides and reveals new insights into the botcinins biosynthetic pathway. Phytochemistry, 2021, 183, 112627.	1.4	7
24	Recent approaches on the genomic analysis of the phytopathogenic fungus Colletotrichum spp Phytochemistry Reviews, 2020, 19, 589-601.	3.1	4
25	Botrytis species as biocatalysts. Phytochemistry Reviews, 2020, 19, 529-558.	3.1	4
26	Bacteriophages as an Up-and-Coming Alternative to the Use of Sulfur Dioxide in Winemaking. Frontiers in Microbiology, 2019, 10, 2931.	1.5	3
27	Biocatalytic Preparation of Chloroindanol Derivatives. Antifungal Activity and Detoxification by the Phytopathogenic Fungus Botrytis cinerea. Plants, 2020, 9, 1648.	1.6	2

28 Endophytic Fungal Community Associated with Colombian Plants. , 2021, , 93-108.