
Chuanyin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/66207/publications.pdf Version: 2024-02-01

CHILANVIN

#	Article	IF	CITATIONS
1	The recent progress on three-dimensional porous graphene-based hybrid structure for supercapacitor. Composites Part B: Engineering, 2019, 165, 10-46.	12.0	162
2	A smart porous wood-supported flower-like NiS/Ni conjunction with vitrimer co-effect as a multifunctional material with reshaping, shape-memory, and self-healing properties for applications in high-performance supercapacitors, catalysts, and sensors. Journal of Materials Chemistry A, 2020, 8, 10898-10908.	10.3	107
3	Non-carbonized porous lignin-free wood as an effective scaffold to fabricate lignin-free Wood@Polyaniline supercapacitor material for renewable energy storage application. Journal of Power Sources, 2020, 471, 228448.	7.8	97
4	A smart paper@polyaniline nanofibers incorporated vitrimer bifunctional device with reshaping, shape-memory and self-healing properties applied in high-performance supercapacitors and sensors. Chemical Engineering Journal, 2020, 396, 125318.	12.7	93
5	Carbohydrates-rich corncobs supported metal-organic frameworks as versatile biosorbents for dye removal and microbial inactivation. Carbohydrate Polymers, 2019, 222, 115042.	10.2	86
6	Fabrication of eco-friendly carbon microtubes @ nitrogen-doped reduced graphene oxide hybrid as an excellent carbonaceous scaffold to load MnO2 nanowall (PANI nanorod) as bifunctional material for high-performance supercapacitor and oxygen reduction reaction catalyst. Journal of Power Sources, 2020, 447, 227387.	7.8	86
7	Facile synthesis of Ag NPs@ MIL-100(Fe)/ guar gum hybrid hydrogel as a versatile photocatalyst for wastewater remediation: Photocatalytic degradation, water/oil separation and bacterial inactivation. Carbohydrate Polymers, 2020, 230, 115642.	10.2	82
8	Two-step approach of fabrication of interconnected nanoporous 3D reduced graphene oxide-carbon nanotube-polyaniline hybrid as a binder-free supercapacitor electrode. Journal of Alloys and Compounds, 2017, 695, 1248-1259.	5.5	76
9	Flexible N-Doped reduced graphene oxide/carbon Nanotube-MnO2 film as a Multifunctional Material for High-Performance supercapacitors, catalysts and sensors. Journal of Materiomics, 2020, 6, 523-531.	5.7	72
10	Carbonized wood cell chamber-reduced graphene oxide@PVA flexible conductive material for supercapacitor, strain sensing and moisture-electric generation applications. Chemical Engineering Journal, 2021, 418, 129518.	12.7	72
11	Screen printing fabricating patterned and customized full paper-based energy storage devices with excellent photothermal, self-healing, high energy density and good electromagnetic shielding performances. Journal of Materials Science and Technology, 2022, 97, 190-200.	10.7	71
12	Vitrimer-Cellulose Paper Composites: A New Class of Strong, Smart, Green, and Sustainable Materials. ACS Applied Materials & Interfaces, 2019, 11, 36090-36099.	8.0	67
13	New Kind of Lignin/Polyhydroxyurethane Composite: Green Synthesis, Smart Properties, Promising Applications, and Good Reprocessability and Recyclability. ACS Applied Materials & Interfaces, 2021, 13, 28938-28948.	8.0	64
14	Fabrication of 3D Expanded Graphite-Based (MnO2ÂNanowalls and PANI Nanofibers) Hybrid as Bifunctional Material for High-Performance Supercapacitor and Sensor. Journal of the Electrochemical Society, 2019, 166, A3965-A3971.	2.9	62
15	A multifunctional self-crosslinked chitosan/cationic guar gum composite hydrogel and its versatile uses in phosphate-containing water treatment and energy storage. Carbohydrate Polymers, 2020, 244, 116472.	10.2	58
16	Two – step approach of fabrication of three – dimensional reduced graphene oxide – carbon nanotubes – nickel foams hybrid as a binder – free supercapacitor electrode. Electrochimica Acta, 2016, 217, 9-15.	5.2	52
17	Fabrication of reduced graphene oxide-cellulose nanofibers based hybrid film with good hydrophilicity and conductivity as electrodes of supercapacitor. Cellulose, 2021, 28, 3733-3743.	4.9	44
18	Three-Dimensional Graphene/MnO ₂ Nanowalls Hybrid for High-Efficiency Electrochemical Supercapacitors. Nano, 2018, 13, 1850013.	1.0	40

CHUANYIN

#	Article	IF	CITATIONS
19	A New Kind of Nonconventional Luminogen Based on Aliphatic Polyhydroxyurethane and Its Potential Application in Ink-Free Anticounterfeiting Printing. ACS Applied Materials & Interfaces, 2020, 12, 11005-11015.	8.0	38
20	Highâ€Density Oxygen Doping ofÂConductive Metal Sulfides forÂBetterÂPolysulfide Trapping and Li ₂ Sâ€5 ₈ ÂRedox Kinetics in High Areal Capacity Lithium–Sulfur Batteries. Advanced Science, 2022, 9, e2200840.	11.2	36
21	Fabrication of high value cellulose nanofibers@Ni foam by non carbonization: various application developed during the preparation. Cellulose, 2021, 28, 1455-1468.	4.9	29
22	Ultra-high thermal-conductive, reduced graphene oxide welded cellulose nanofibrils network for efficient thermal management. Carbohydrate Polymers, 2020, 250, 116971.	10.2	28
23	Li–Na metal compounds inserted into porous natural wood as a bifunctional hybrid applied in supercapacitors and electrocatalysis. International Journal of Hydrogen Energy, 2022, 47, 2389-2398.	7.1	28
24	Co-N-Doped Directional Multichannel PAN/CA-Based Electrospun Carbon Nanofibers as High-Efficiency Bifunctional Oxygen Electrocatalysts for Zn–Air Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 17068-17077.	6.7	25
25	Co/CoS nanofibers with flower-like structure immobilized in carbonated porous wood as bifunctional material for high-performance supercapacitors and catalysts. Materials and Design, 2020, 195, 108942.	7.0	24
26	Wood-based micro-spring composite elastic material with excellent electrochemical performance, high elasticity and elastic recovery rate applied in supercapacitors and sensors. Industrial Crops and Products, 2022, 178, 114565.	5.2	23
27	Construction of flexible cellulose nanofiber fiber@graphene quantum dots hybrid film applied in supercapacitor and sensor. Cellulose, 2021, 28, 10359-10372.	4.9	21
28	Carbonized porous wood as an effective scaffold for loading flower-like CoS, NiS nanofibers with Co, Ni nanoparticles served as electrode material for high-performance supercapacitors. Industrial Crops and Products, 2021, 167, 113545.	5.2	21
29	A Facile Method of Preparing the Asymmetric Supercapacitor with Two Electrodes Assembled on a Sheet of Filter Paper. Nanomaterials, 2019, 9, 1338.	4.1	14
30	A Facile Method to Prepare Silver Doped Graphene Combined with Polyaniline for High Performances of Filter Paper Based Flexible Electrode. Nanomaterials, 2019, 9, 1434.	4.1	12
31	Nanofibrillated Cellulose-Derived Nanofibrous Co@N-C as Oxygen Reduction Reaction Catalysts in Zn–Air Batteries. ACS Applied Nano Materials, 2022, 5, 6438-6446.	5.0	9
32	Low-cost and low-density carbonized facial tissue supported uniform NiCo2S4 nanotubes for high capacity flexible solid-state supercapacitors. Journal of Materiomics, 2021, 7, 166-176.	5.7	7
33	Role of nanocellulose in colored paper preparation. International Journal of Biological Macromolecules, 2022, 206, 355-362.	7.5	3