
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6619566/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thiol-Capping of CdTe Nanocrystals:  An Alternative to Organometallic Synthetic Routes. Journal of Physical Chemistry B, 2002, 106, 7177-7185.	1.2	1,485
2	Aqueous Synthesis of Thiol-Capped CdTe Nanocrystals:  State-of-the-Art. Journal of Physical Chemistry C, 2007, 111, 14628-14637.	1.5	703
3	Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties. Analytical Chemistry, 2009, 81, 6285-6294.	3.2	556
4	Noble Metal Aerogels—Synthesis, Characterization, and Application as Electrocatalysts. Accounts of Chemical Research, 2015, 48, 154-162.	7.6	313
5	Lightâ€Emitting Diodes with Semiconductor Nanocrystals. Angewandte Chemie - International Edition, 2008, 47, 6538-6549.	7.2	305
6	Modern Inorganic Aerogels. Angewandte Chemie - International Edition, 2017, 56, 13200-13221.	7.2	303
7	Nanoengineered Polymer Capsules: Tools for Detection, Controlled Delivery, and Site-Specific Manipulation. Small, 2005, 1, 194-200.	5.2	271
8	Hydrogels and Aerogels from Noble Metal Nanoparticles. Angewandte Chemie - International Edition, 2009, 48, 9731-9734.	7.2	271
9	A New Approach to Crystallization of CdSe Nanoparticles into Ordered Three-Dimensional Superlattices. Advanced Materials, 2001, 13, 1868.	11.1	248
10	Efficient Phase Transfer of Luminescent Thiol-Capped Nanocrystals:  From Water to Nonpolar Organic Solvents. Nano Letters, 2002, 2, 803-806.	4.5	247
11	Colloidal semiconductor nanocrystals: the aqueous approach. Chemical Society Reviews, 2013, 42, 2905-2929.	18.7	247
12	Bimetallic Aerogels: Highâ€Performance Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2013, 52, 9849-9852.	7.2	246
13	Quantum dot integrated LEDs using photonic and excitonic color conversion. Nano Today, 2011, 6, 632-647.	6.2	245
14	Nonfunctionalized Nanocrystals Can Exploit a Cell's Active Transport Machinery Delivering Them to Specific Nuclear and Cytoplasmic Compartments. Nano Letters, 2007, 7, 3452-3461.	4.5	219
15	Efficient UV-Blue Photoluminescing Thiol-Stabilized Water-Soluble Alloyed ZnSe(S) Nanocrystals. Journal of Physical Chemistry B, 2004, 108, 5905-5908.	1.2	216
16	Size-Dependent Electrochemical Behavior of Thiol-Capped CdTe Nanocrystals in Aqueous Solution. Journal of Physical Chemistry B, 2005, 109, 1094-1100.	1.2	211
17	Etching of Colloidal InP Nanocrystals with Fluorides:  Photochemical Nature of the Process Resulting in High Photoluminescence Efficiency. Journal of Physical Chemistry B, 2002, 106, 12659-12663.	1.2	209
18	Boosting Photocatalytic CO ₂ Reduction on CsPbBr ₃ Perovskite Nanocrystals by Immobilizing Metal Complexes. Chemistry of Materials, 2020, 32, 1517-1525.	3.2	197

#	Article	IF	CITATIONS
19	Relations between the Photoluminescence Efficiency of CdTe Nanocrystals and Their Surface Properties Revealed by Synchrotron XPS. Journal of Physical Chemistry B, 2003, 107, 9662-9668.	1.2	191
20	Toward Encoding Combinatorial Libraries: Charge-Driven Microencapsulation of Semiconductor Nanocrystals Luminescing in the Visible and Near IR. Advanced Materials, 2002, 14, 879.	11.1	188
21	Solid-State Anion Exchange Reactions for Color Tuning of CsPbX ₃ Perovskite Nanocrystals. Chemistry of Materials, 2016, 28, 9033-9040.	3.2	182
22	Factors Governing the Quality of Aqueous CdTe Nanocrystals:  Calculations and Experiment. Journal of Physical Chemistry B, 2006, 110, 19280-19284.	1.2	181
23	Highâ€Performance Electrocatalysis on Palladium Aerogels. Angewandte Chemie - International Edition, 2012, 51, 5743-5747.	7.2	181
24	Luminescent Polymer Microcapsules Addressable by a Magnetic Field. Langmuir, 2004, 20, 1449-1452.	1.6	180
25	Solar light harvesting with multinary metal chalcogenide nanocrystals. Chemical Society Reviews, 2018, 47, 5354-5422.	18.7	177
26	Core-Shell Structures Formed by the Solvent-Controlled Precipitation of Luminescent CdTe Nanocrystals on Latex Spheres. Advanced Materials, 2001, 13, 1684-1687.	11.1	159
27	Progress in the Light Emission of Colloidal Semiconductor Nanocrystals. Small, 2010, 6, 1364-1378.	5.2	159
28	Surface Plasmon Enhanced Energy Transfer between Donor and Acceptor CdTe Nanocrystal Quantum Dot Monolayers. Nano Letters, 2011, 11, 3341-3345.	4.5	159
29	Colloidal Nanocrystal-Based Gels and Aerogels: Material Aspects and Application Perspectives. Journal of Physical Chemistry Letters, 2012, 3, 8-17.	2.1	155
30	Labeling of Biocompatible Polymer Microcapsules with Near-Infrared Emitting Nanocrystals. Nano Letters, 2003, 3, 369-372.	4.5	153
31	Multimetallic Aerogels by Template-Free Self-Assembly of Au, Ag, Pt, and Pd Nanoparticles. Chemistry of Materials, 2014, 26, 1074-1083.	3.2	148
32	Controlled Fabrication of Gold-Coated 3D Ordered Colloidal Crystal Films and Their Application in Surface-Enhanced Raman Spectroscopy. Chemistry of Materials, 2005, 17, 5731-5736.	3.2	147
33	Colloidal Nanocrystals Embedded in Macrocrystals: Robustness, Photostability, and Color Purity. Nano Letters, 2012, 12, 5348-5354.	4.5	136
34	Wavelength, Concentration, and Distance Dependence of Nonradiative Energy Transfer to a Plane of Gold Nanoparticles. ACS Nano, 2012, 6, 9283-9290.	7.3	131
35	A Fine Size Selection of Brightly Luminescent Water-Soluble Ag–In–S and Ag–In–S/ZnS Quantum Dots. Journal of Physical Chemistry C, 2017, 121, 9032-9042.	1.5	131
36	Fast energy transfer in layer-by-layer assembled CdTe nanocrystal bilayers. Applied Physics Letters, 2004, 84, 2904-2906.	1.5	130

#	Article	IF	CITATIONS
37	Experimental and Theoretical Investigation of the Distance Dependence of Localized Surface Plasmon Coupled Förster Resonance Energy Transfer. ACS Nano, 2014, 8, 1273-1283.	7.3	130
38	Comparative Examination of the Stability of Semiconductor Quantum Dots in Various Biochemical Buffers. Journal of Physical Chemistry B, 2006, 110, 1959-1963.	1.2	128
39	Lateral Patterning of CdTe Nanocrystal Films by the Electric Field Directed Layer-by-Layer Assembly Method. Langmuir, 2002, 18, 4098-4102.	1.6	127
40	Electrochemical synthesis of CdTe nanocrystal/polypyrrole composites for optoelectronic applications. Journal of Materials Chemistry, 2000, 10, 2163-2166.	6.7	121
41	Threeâ€Dimensional Selfâ€Assembly of Thiol apped CdTe Nanocrystals: Gels and Aerogels as Building Blocks for Nanotechnology. Advanced Materials, 2008, 20, 4257-4262.	11.1	116
42	Thiol-capped CdTe nanocrystals: progress and perspectives of the related research fields. Physical Chemistry Chemical Physics, 2010, 12, 8685.	1.3	113
43	3D Assembly of Semiconductor and Metal Nanocrystals: Hybrid CdTe/Au Structures with Controlled Content. Journal of the American Chemical Society, 2011, 133, 13413-13420.	6.6	112
44	Concentration dependence of Förster resonant energy transfer between donor and acceptor nanocrystal quantum dot layers: Effect of donor-donor interactions. Physical Review B, 2011, 83, .	1.1	111
45	ITOâ€Free, Smallâ€Molecule Organic Solar Cells on Spray oated Copperâ€Nanowireâ€Based Transparent Electrodes. Advanced Energy Materials, 2014, 4, 1300737.	10.2	110
46	Highly Luminescent and Water-Resistant CsPbBr ₃ –CsPb ₂ Br ₅ Perovskite Nanocrystals Coordinated with Partially Hydrolyzed Poly(methyl methacrylate) and Polyethylenimine. ACS Nano, 2019, 13, 10386-10396.	7.3	110
47	Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots. Applied Physics Letters, 2006, 89, 253118.	1.5	109
48	Large-Area (over 50 cm × 50 cm) Freestanding Films of Colloidal InP/ZnS Quantum Dots. Nano Letters, 2012, 12, 3986-3993.	4.5	104
49	Emerging Hierarchical Aerogels: Selfâ€Assembly of Metal and Semiconductor Nanocrystals. Advanced Materials, 2018, 30, e1707518.	11.1	104
50	Enzymeâ€Encapsulating Quantum Dot Hydrogels and Xerogels as Biosensors: Multifunctional Platforms for Both Biocatalysis and Fluorescent Probing. Angewandte Chemie - International Edition, 2013, 52, 976-979.	7.2	103
51	A light-emitting device based on a CdTe nanocrystal/polyaniline composite. Physical Chemistry Chemical Physics, 1999, 1, 1787-1789.	1.3	98
52	Fine structure of coupled optical modes in photonic molecules. Physical Review A, 2004, 70, .	1.0	94
53	Selective Fabrication of Ordered Bimetallic Nanostructures with Hierarchical Porosity. Angewandte Chemie - International Edition, 2005, 44, 5997-6001.	7.2	89
54	High-Rate Unidirectional Energy Transfer in Directly Assembled CdTe Nanocrystal Bilayers. Small, 2005, 1, 392-395.	5.2	87

4

#	Article	IF	CITATIONS
55	Influence of quantum dot concentration on Förster resonant energy transfer in monodispersed nanocrystal quantum dot monolayers. Physical Review B, 2010, 81, .	1.1	85
56	Switchable Photoluminescence of CdTe Nanocrystals by Temperature-Responsive Microgels. Langmuir, 2008, 24, 9820-9824.	1.6	81
57	Resonance Energy Transfer Improves the Biological Function of Bacteriorhodopsin within a Hybrid Material Built from Purple Membranes and Semiconductor Quantum Dots. Nano Letters, 2010, 10, 2640-2648.	4.5	80
58	CdTe Nanocrystals Capped with a Tetrazolyl Analogue of Thioglycolic Acid: Aqueous Synthesis, Characterization, and Metal-Assisted Assembly. ACS Nano, 2010, 4, 4090-4096.	7.3	80
59	Synthesis of surface-modified colloidal semiconductor nanocrystals and study of photoinduced charge separation and transport in nanocrystal-polymer composites. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 14, 237-241.	1.3	79
60	Fabrication and characterization of red-emitting electroluminescent devices based on thiol-stabilized semiconductor nanocrystals. Applied Physics Letters, 2007, 90, 034107.	1.5	75
61	3D Assembly of Allâ€Inorganic Colloidal Nanocrystals into Gels and Aerogels. Angewandte Chemie - International Edition, 2016, 55, 6334-6338.	7.2	75
62	The Assembling of Semiconductor Nanocrystals. European Journal of Inorganic Chemistry, 2005, 2005, 3613-3623.	1.0	74
63	Dual-color emitting quantum-dot-quantum-well CdSe-ZnS heteronanocrystals hybridized on InGaNâ^•GaN light emitting diodes for high-quality white light generation. Applied Physics Letters, 2008, 92, .	1.5	74
64	Absolute photoluminescence quantum yields of IR26 and IR-emissive Cd _{1â~x} Hg _x Te and PbS quantum dots – method- and material-inherent challenges. Nanoscale, 2015, 7, 133-143.	2.8	74
65	Whispering gallery mode emission from a composite system of CdTe nanocrystals and a spherical microcavity. Semiconductor Science and Technology, 2003, 18, 914-918.	1.0	69
66	Near-Infrared Electroluminescence from HgTe Nanocrystals. ChemPhysChem, 2004, 5, 1435-1438.	1.0	68
67	Application of Polymer Quantum Dot-Enzyme Hybrids in the Biosensor Development and Test Paper Fabrication. Analytical Chemistry, 2012, 84, 5047-5052.	3.2	67
68	Photoluminescence Quantum Yield and Matrix-Induced Luminescence Enhancement of Colloidal Quantum Dots Embedded in Ionic Crystals. Chemistry of Materials, 2014, 26, 3231-3237.	3.2	67
69	Anisotropic Emission from Multilayered Plasmon Resonator Nanocomposites of Isotropic Semiconductor Quantum Dots. ACS Nano, 2011, 5, 1328-1334.	7.3	66
70	In-Situ Observation of Nanowire Growth from Luminescent CdTe Nanocrystals in a Phosphate Buffer Solution. ChemPhysChem, 2004, 5, 1600-1602.	1.0	62
71	A spray-coating process for highly conductive silver nanowire networks as the transparent top-electrode for small molecule organic photovoltaics. Nanoscale, 2015, 7, 2777-2783.	2.8	62
72	Silanized Luminescent Quantum Dots for the Simultaneous Multicolor Lateral Flow Immunoassay of Two Mycotoxins. ACS Applied Materials & Interfaces, 2020, 12, 24575-24584.	4.0	62

#	Article	IF	CITATIONS
73	Layerâ€byâ€Layer Allâ€Inorganic Quantumâ€Dotâ€Based LEDs: A Simple Procedure with Robust Performance. Advanced Functional Materials, 2010, 20, 3298-3302.	7.8	61
74	Mixed Aerogels from Au and CdTe Nanoparticles. Advanced Functional Materials, 2013, 23, 1903-1911.	7.8	60
75	Penetration of Amphiphilic Quantum Dots through Model and Cellular Plasma Membranes. ACS Nano, 2012, 6, 2150-2156.	7.3	59
76	Covalent immobilization of quantum dots on macroscopic surfaces using poly(acrylic acid) brushes. Journal of Materials Chemistry, 2008, 18, 214-220.	6.7	58
77	Self-Assembly of TGA-Capped CdTe Nanocrystals into Three-Dimensional Luminescent Nanostructures. Chemistry of Materials, 2010, 22, 2309-2314.	3.2	58
78	Stable Dispersion of Iodide-Capped PbSe Quantum Dots for High-Performance Low-Temperature Processed Electronics and Optoelectronics. Chemistry of Materials, 2015, 27, 4328-4337.	3.2	56
79	White emitting CdS quantum dot nanoluminophores hybridized on near-ultraviolet LEDs for high-quality white light generation and tuning. New Journal of Physics, 2008, 10, 023026.	1.2	55
80	One-step aqueous synthesis of blue-emitting glutathione-capped ZnSe1â^'xTexalloyed nanocrystals. Chemical Communications, 2010, 46, 886-888.	2.2	53
81	Inherently Broadband Photoluminescence in Ag–In–S/ZnS Quantum Dots Observed in Ensemble and Single-Particle Studies. Journal of Physical Chemistry C, 2019, 123, 2632-2641.	1.5	53
82	Liquid–Liquid Diffusionâ€Assisted Crystallization: A Fast and Versatile Approach Toward High Quality Mixed Quantum Dotâ€Salt Crystals. Advanced Functional Materials, 2015, 25, 2638-2645.	7.8	52
83	Enhanced quantum dot deposition on ZnO nanorods for photovoltaics through layer-by-layer processing. Journal of Materials Chemistry, 2011, 21, 2517.	6.7	51
84	Luminescence and photoelectrochemical properties of size-selected aqueous copper-doped Ag–In–S quantum dots. RSC Advances, 2018, 8, 7550-7557.	1.7	51
85	Hybrid N-Butylamine-Based Ligands for Switching the Colloidal Solubility and Regimentation of Inorganic-Capped Nanocrystals. ACS Nano, 2017, 11, 1559-1571.	7.3	49
86	Covalent Linking of CdTe Nanocrystals to Amino-Functionalized Surfaces. ChemPhysChem, 2005, 6, 449-451.	1.0	48
87	Implementation of High-Quality Warm-White Light-Emitting Diodes by a Model-Experimental Feedback Approach Using Quantum Dot–Salt Mixed Crystals. ACS Applied Materials & Interfaces, 2015, 7, 23364-23371.	4.0	48
88	Photoluminescence properties of heat-treated porous alumina films formed in oxalic acid. Journal of Luminescence, 2011, 131, 938-942.	1.5	46
89	Simultaneous Identification of Spectral Properties and Sizes of Multiple Particles in Solution with Subnanometer Resolution. Angewandte Chemie - International Edition, 2016, 55, 11770-11774.	7.2	46
90	Investigation of Energy Transfer between CdTe Nanocrystals on Polystyrene Beads and Dye Molecules for FRET-SNOM Applications†Journal of Physical Chemistry B, 2004, 108, 14527-14534	1.2	45

#	Article	IF	CITATIONS
91	Tuning shades of white light with multi-color quantum-dot–quantum-well emitters based on onion-like CdSe–ZnS heteronanocrystals. Nanotechnology, 2008, 19, 335203.	1.3	45
92	Luminescent energy transfer between cadmium telluride nanoparticle and lanthanide(III) chelate in competitive bioaffinity assays of biotin and estradiol. Analytica Chimica Acta, 2007, 604, 177-183.	2.6	44
93	Hybrid organic/inorganic semiconductor nanostructures with highly efficient energy transfer. Journal of Materials Chemistry, 2012, 22, 10816.	6.7	44
94	Chloride and Indium hloride omplex Inorganic Ligands for Efficient Stabilization of Nanocrystals in Solution and Doping of Nanocrystal Solids. Advanced Functional Materials, 2016, 26, 2163-2175.	7.8	43
95	Structural tuning of color chromaticity through nonradiative energy transfer by interspacing CdTe nanocrystal monolayers. Applied Physics Letters, 2009, 94, .	1.5	41
96	Electrochemical Tuning of Localized Surface Plasmon Resonance in Copper Chalcogenide Nanocrystals. Journal of Physical Chemistry C, 2017, 121, 18244-18253.	1.5	41
97	Highly efficient Förster resonance energy transfer between CdTe nanocrystals and Rhodamine B in mixed solid films. Chemical Physics Letters, 2004, 388, 100-104.	1.2	40
98	Assemblies of thiol-capped nanocrystals as building blocks for use in nanotechnology. Journal of Materials Chemistry, 2010, 20, 5174.	6.7	40
99	Quantum-Dot-Based (Aero)gels: Control of the Optical Properties. Journal of Physical Chemistry Letters, 2012, 3, 2188-2193.	2.1	40
100	Electrostatic and Covalent Interactions in CdTe Nanocrystalline Assemblies. Journal of Physical Chemistry B, 2005, 109, 20244-20250.	1.2	39
101	Ultrafast Interfacial Charge Carrier Dynamics in ZnSe and ZnSe/ZnS Core/Shell Nanoparticles: Influence of Shell Formation. Journal of Physical Chemistry C, 2008, 112, 2703-2710.	1.5	39
102	Selective enhancement of surface-state emission and simultaneous quenching of interband transition in white-luminophor CdS nanocrystals using localized plasmon coupling. New Journal of Physics, 2008, 10, 083035.	1.2	39
103	One-pot aqueous synthesis of high quality near infrared emitting Cd1â^'xHgxTe nanocrystals. Journal of Materials Chemistry, 2009, 19, 9147.	6.7	39
104	Effect of Metal Nanoparticle Concentration on Localized Surface Plasmon Mediated Förster Resonant Energy Transfer. Journal of Physical Chemistry C, 2012, 116, 26529-26534.	1.5	39
105	"Green―Aqueous Synthesis and Advanced Spectral Characterization of Size-Selected Cu2ZnSnS4 Nanocrystal Inks. Scientific Reports, 2018, 8, 13677.	1.6	39
106	Cathodic and Anodic Material Diffusion in Polymer/Semiconductorâ€Nanocrystal Composite Devices. Advanced Materials, 2007, 19, 3364-3367.	11.1	38
107	Branched Wires of CdTe Nanocrystals Using Amphiphilic Molecules as Templates. Small, 2005, 1, 524-527.	5.2	37
108	Origin of the Broadband Photoluminescence of Pristine and Cu ⁺ /Ag ⁺ -Doped Ultrasmall CdS and CdSe/CdS Quantum Dots. Journal of Physical Chemistry C, 2018, 122, 10267-10277.	1.5	37

#	Article	IF	CITATIONS
109	Raman characterization of Cu ₂ ZnSnS ₄ nanocrystals: phonon confinement effect and formation of Cu _x S phases. RSC Advances, 2018, 8, 30736-30746.	1.7	37
110	SYNTHESIS AND OPTICAL PROPERTIES OF WATER SOLUBLE ZnSe NANOCRYSTALS. International Journal of Modern Physics B, 2001, 15, 3881-3884.	1.0	35
111	Raman scattering and anti-Stokes emission from a single spherical microcavity with a CdTe quantum dot monolayer. Applied Physics Letters, 2003, 83, 2539-2541.	1.5	34
112	Studying the Reactions of CdTe Nanostructures and Thin CdTe Films with Ag ⁺ and AuCl ₄ ^{â~'} . Journal of Physical Chemistry C, 2008, 112, 8881-8889.	1.5	34
113	Structure-related optical properties of luminescent hetero-opals. Journal of Applied Physics, 2004, 95, 1029-1035.	1.1	32
114	Toward efficient blue-emitting thiol-capped Zn1â^'xCdxSe nanocrystals. Journal of Materials Chemistry, 2008, 18, 5142.	6.7	32
115	Humidity assisted annealing technique for transparent conductive silver nanowire networks. RSC Advances, 2015, 5, 19659-19665.	1.7	32
116	Tetrazoles: Unique Capping Ligands and Precursors for Nanostructured Materials. Small, 2015, 11, 5728-5739.	5.2	31
117	Subwavelength emitters in the near-infrared based on mercury telluride nanocrystals. Applied Physics Letters, 2004, 84, 4732-4734.	1.5	30
118	Electrochemical Observation of the Photoinduced Formation of Alloyed ZnSe(S) Nanocrystals. Journal of Physical Chemistry B, 2006, 110, 19233-19237.	1.2	30
119	Synthesis of Amphiphilic CdTe Nanocrystals. Journal of Physical Chemistry C, 2009, 113, 4748-4750.	1.5	30
120	Experimental and theoretical investigations of the ligand structure of water-soluble CdTe nanocrystals. Dalton Transactions, 2013, 42, 12733.	1.6	29
121	Quantumâ€Dotâ€inâ€Polymer Composites via Advanced Surface Engineering. Small Methods, 2017, 1, 1700189.	4.6	29
122	Quantum Dot Thin Layers Templated on ZnO Inverse Opals. Advanced Materials, 2006, 18, 2768-2772.	11.1	28
123	White organic light-emitting devices incorporating nanoparticles of Il–VI semiconductors. Nanotechnology, 2007, 18, 335202.	1.3	28
124	Large Enhancement of Nonlinear Optical Response in a Hybrid Nanobiomaterial Consisting of Bacteriorhodopsin and Cadmium Telluride Quantum Dots. ACS Nano, 2013, 7, 2154-2160.	7.3	28
125	Colloidal Nanocrystals Embedded in Macrocrystals: Methods and Applications. Journal of Physical Chemistry Letters, 2016, 7, 4117-4123.	2.1	28
126	Cold Flow as Versatile Approach for Stable and Highly Luminescent Quantum Dot–Salt Composites. ACS Applied Materials & Interfaces, 2016, 8, 21570-21575.	4.0	28

#	Article	IF	CITATIONS
127	Energy transfer in colloidal CdTe quantum dot nanoclusters. Optics Express, 2010, 18, 24486.	1.7	27
128	Modification of the spontaneous emission of CdTe nanocrystals in TiO2 inverted opals. Journal of Applied Physics, 2003, 94, 1205-1210.	1.1	26
129	Electrochemical probing of thiol-capped nanocrystals. Mikrochimica Acta, 2008, 160, 327-334.	2.5	26
130	Confined Optical Vibrations in CdTe Quantum Dots and Clusters. Physica Status Solidi (B): Basic Research, 2002, 229, 433-437.	0.7	25
131	Alloying Behavior of Selfâ€Assembled Noble Metal Nanoparticles. Chemistry - A European Journal, 2016, 22, 13446-13450.	1.7	25
132	pH and concentration dependence of the optical properties of thiol-capped CdTe nanocrystals in water and D ₂ 0. Physical Chemistry Chemical Physics, 2016, 18, 19083-19092.	1.3	25
133	Quantum dot emitters in two-dimensional photonic crystals of macroporous silicon. Applied Physics Letters, 2005, 87, 142107.	1.5	24
134	Formation of Copper Nanowires by Electroless Deposition Using Microtubules as Templates. Journal of Nanoscience and Nanotechnology, 2008, 8, 3416-3421.	0.9	24
135	Saturated near-resonant refractive optical nonlinearity in CdTe quantum dots. Optics Letters, 2010, 35, 1079.	1.7	24
136	Versatile Tri(pyrazolyl)phosphanes as Phosphorus Precursors for the Synthesis of Highly Emitting InP/ZnS Quantum Dots. Angewandte Chemie - International Edition, 2017, 56, 14737-14742.	7.2	24
137	Confined optical modes in small photonic molecules with semiconductor nanocrystals. Journal of Applied Physics, 2004, 96, 6761-6765.	1.1	22
138	Homogeneity and elemental distribution in self-assembled bimetallic Pd–Pt aerogels prepared by a spontaneous one-step gelation process. Physical Chemistry Chemical Physics, 2016, 18, 20640-20650.	1.3	22
139	Light emission in a directional photonic bandgap. Physica Status Solidi A, 2003, 197, 662-672.	1.7	21
140	Confocal microscopy and spectroscopy of nanocrystals on a high-Qmicrosphere resonator. Journal of Optics B: Quantum and Semiclassical Optics, 2004, 6, 154-158.	1.4	21
141	Sodium Chloride Protected CdHgTe Quantum Dot Based Solid-State Near-Infrared Luminophore for Light-Emitting Devices and Luminescence Thermometry. ACS Photonics, 2017, 4, 1459-1465.	3.2	21
142	Precise Engineering of Nanocrystal Shells via Colloidal Atomic Layer Deposition. Chemistry of Materials, 2017, 29, 8111-8118.	3.2	21
143	Emission stimulation in a directional band gap of a CdTe-loaded opal photonic crystal. Physical Review E, 2004, 69, 046606.	0.8	20
144	Structural Analysis and Electrochemical Properties of Bimetallic Palladium–Platinum Aerogels Prepared by a Two‣tep Gelation Process. ChemCatChem, 2017, 9, 798-808.	1.8	20

#	Article	IF	CITATIONS
145	Magneto-Optical Studies of HgTe/HgxCd1â^'xTe(S) Core-Shell Nanocrystals. ChemPhysChem, 2003, 4, 1203-1210.	1.0	19
146	Highly conductive silver nanowire networks by organic matrix assisted low-temperature fusing. Organic Electronics, 2014, 15, 3818-3824.	1.4	19
147	Highly emitting perovskite quantum dots are finally available in water. MRS Communications, 2019, 9, 1-2.	0.8	18
148	Hyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites. Optics Express, 2014, 22, 18290.	1.7	17
149	Stable and efficient colour enrichment powders of nonpolar nanocrystals in LiCl. Nanoscale, 2015, 7, 17611-17616.	2.8	17
150	Macrocrystals of Colloidal Quantum Dots in Anthracene: Exciton Transfer and Polarized Emission. Journal of Physical Chemistry Letters, 2015, 6, 1767-1772.	2.1	17
151	Transfer of Inorganic-Capped Nanocrystals into Aqueous Media. Journal of Physical Chemistry Letters, 2017, 8, 5573-5578.	2.1	17
152	Insights into different photoluminescence mechanisms of binary and ternary aqueous nanocrystals from the temperature dependence: A case study of CdSe and Ag-In-S. Journal of Luminescence, 2019, 215, 116630.	1.5	17
153	Robust Polymer Matrix Based on Isobutylene (Co)polymers for Efficient Encapsulation of Colloidal Semiconductor Nanocrystals. ACS Applied Nano Materials, 2019, 2, 956-963.	2.4	17
154	Temperatureâ€Dependent Photoluminescence of Silverâ€Indiumâ€Sulfide Nanocrystals in Aqueous Colloidal Solutions. ChemPhysChem, 2019, 20, 1640-1648.	1.0	17
155	Highly directional emission from colloidally synthesized nanocrystals in vertical cavities with small mode spacing. Applied Physics Letters, 2004, 84, 2223-2225.	1.5	16
156	Effect of chemical composition on luminescence of thiol-stabilized CdTe nanocrystals. Nanoscale Research Letters, 2007, 2, 230-234.	3.1	16
157	One-Phase Synthesis of Gold Nanoparticles with Varied Solubility. Langmuir, 2011, 27, 10224-10227.	1.6	16
158	Influence of the stabilizing ligand on the quality, signal-relevant optical properties, and stability of near-infrared emitting Cd1â^'xHgxTe nanocrystals. Journal of Materials Chemistry C, 2014, 2, 5011-5018.	2.7	16
159	Immobilization of pH-sensitive CdTe Quantum Dots in a Poly(acrylate) Hydrogel for Microfluidic Applications. Nanoscale Research Letters, 2017, 12, 314.	3.1	16
160	Sweet plasmonics: Sucrose macrocrystals of metal nanoparticles. Nano Research, 2015, 8, 860-869.	5.8	15
161	Mercury-indium-sulfide nanocrystals: A new member of the family of ternary in based chalcogenides. Journal of Chemical Physics, 2019, 151, 144701.	1.2	15
162	Highly efficient nonradiative energy transfer mediated light harvesting in water using aqueous CdTe quantum dot antennas. Optics Express, 2010, 18, 10720.	1.7	14

#	Article	IF	CITATIONS
163	Whispering gallery modes in photoluminescence and Raman spectra of a spherical microcavity with CdTe quantum dots: anti-Stokes emission and interference effects. Nanoscale Research Letters, 2006, 1, 68-73.	3.1	13
164	Influence of the average molar mass of poly(N-vinylpyrrolidone) on the dimensions and conductivity of silver nanowires. Physical Chemistry Chemical Physics, 2019, 21, 9036-9043.	1.3	13
165	Exploring integration prospects of opal-based photonic crystals. Synthetic Metals, 2003, 139, 701-704.	2.1	12
166	Reply: Self-Assembly of Monodisperse Nanocrystals Into Faceted Crystal Superlattices. Advanced Materials, 2005, 17, 1325-1329.	11.1	12
167	Aqueous synthesis of semiconductor nanocrystals. , 2008, , 73-99.		12
168	Resonance energy transfer in self-organized organic/inorganic dendrite structures. Nanoscale, 2013, 5, 9317.	2.8	12
169	3D assembly of silica encapsulated semiconductor nanocrystals. Nanoscale, 2015, 7, 12713-12721.	2.8	12
170	Aqueous-Based Cadmium Telluride Quantum Dot/Polyurethane/Polyhedral Oligomeric Silsesquioxane Composites for Color Enhancement in Display Backlights. Journal of Physical Chemistry C, 2018, 122, 13391-13398.	1.5	12
171	Self-Supported Three-Dimensional Quantum Dot Aerogels as a Promising Photocatalyst for CO ₂ Reduction. Chemistry of Materials, 2022, 34, 2687-2695.	3.2	12
172	Moderne Anorganische Aerogele. Angewandte Chemie, 2017, 129, 13380-13403.	1.6	11
173	Tetrazole-Stabilized Gold Nanoparticles for Catalytic Applications. Zeitschrift Fur Physikalische Chemie, 2017, 231, 51-62.	1.4	11
174	Methods to Characterize the Oligonucleotide Functionalization of Quantum Dots. Small, 2016, 12, 4763-4771.	5.2	10
175	Modification of emission of CdTe nanocrystals by the local field of Langmuir–Blodgett colloidal photonic crystals. Journal of Applied Physics, 2008, 104, 103118.	1.1	9
176	Synthesis and Agglomeration of Silver Nanoparticles Stabilized with 5-R-Tetrazoles. Zeitschrift Fur Physikalische Chemie, 2011, 225, 363-371.	1.4	9
177	QD-Salt Mixed Crystals: the Influence of Salt-Type, Free-Stabilizer, and pH. Zeitschrift Fur Physikalische Chemie, 2015, 229, 109-118.	1.4	9
178	3Dâ€Anordnung anorganischer kolloidaler Nanokristalle zu Gelen und Aerogelen. Angewandte Chemie, 2016, 128, 6442-6446.	1.6	9
179	Amphiphilic and magnetic behavior of Fe3O4 nanocrystals. Physical Chemistry Chemical Physics, 2010, 12, 2063.	1.3	8
180	Bio-nanohybrids of quantum dots and photoproteins facilitating strong nonradiative energy transfer. Nanoscale, 2013, 5, 7034.	2.8	8

#	Article	IF	CITATIONS
181	Europium fluoride based luminescent materials: From hydrogels to porous cryogels, and crystalline NaEuF4 and EuF3 micro/nanostructures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 179, 48-51.	1.7	8
182	5â€(2â€Mercaptoethyl)â€1 <i>H</i> â€tetrazole: Facile Synthesis and Application for the Preparation of Water Soluble Nanocrystals and Their Gels. Chemistry - A European Journal, 2016, 22, 14746-14752.	1.7	8
183	Excitonic improvement of colloidal nanocrystals in salt powder matrix for quality lighting and color enrichment. Optics Express, 2016, 24, A74.	1.7	8
184	Quenching of quantum dots luminescence under light irradiation and its influence on the biological application. Journal of Physics: Conference Series, 2017, 784, 012014.	0.3	8
185	Simulation study of environmentally friendly quantum-dot-based photovoltaic windows. Journal of Materials Chemistry C, 2017, 5, 11790-11797.	2.7	8
186	Brightly Luminescent Cu-Zn-In-S/ZnS Core/Shell Quantum Dots in Salt Matrices. Zeitschrift Fur Physikalische Chemie, 2018, 233, 23-40.	1.4	8
187	Mechanosynthesis of polymer-stabilized lead bromide perovskites: insight into the formation and phase conversion of nanoparticles. Nano Research, 2021, 14, 1078-1086.	5.8	8
188	A direct measurement of g-factors in Il–VI and Ill–V core–shell nanocrystals. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 26, 9-13.	1.3	7
189	Three-dimensional photon confinement in a spherical microcavity with CdTe quantum dots: Raman spectroscopy. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 26, 28-32.	1.3	7
190	Application Prospects of Sprayâ€Assisted Layerâ€by‣ayer Assembly of Colloidal Nanoparticles. ChemPhysChem, 2012, 13, 2128-2132.	1.0	7
191	Probing Absolute Electronic Energy Levels in Hgâ€Doped CdTe Semiconductor Nanocrystals by Electrochemistry and Density Functional Theory. ChemPhysChem, 2016, 17, 244-252.	1.0	7
192	Automated setup for spray assisted layer-by-layer deposition. Review of Scientific Instruments, 2013, 84, 074101.	0.6	6
193	Metal Nanoparticle Aerogels and Their Applications. ECS Transactions, 2013, 45, 149-154.	0.3	6
194	Chiroptical activity in colloidal quantum dots coated with achiral ligands. Optics Express, 2016, 24, A65.	1.7	6
195	Influence of particle architecture on the photoluminescence properties of silica-coated CdSe core/shell quantum dots. Analytical and Bioanalytical Chemistry, 2022, 414, 4427-4439.	1.9	6
196	Dipole-active vibrations confined in InP quantum dots. Physica B: Condensed Matter, 2002, 316-317, 452-454.	1.3	5
197	Spontaneous emission from semiconductor nanocrystals in coupled spherical microcavities. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 858-861.	0.8	5
198	Multiexciton generation assisted highly photosensitive CdHgTe nanocrystal skins. Nano Energy, 2016, 26, 324-331.	8.2	5

#	Article	IF	CITATIONS
199	Cyclic voltammetry as a sensitive method for in situ probing of chemical transformations in quantum dots. Physical Chemistry Chemical Physics, 2016, 18, 10355-10361.	1.3	5
200	Flexible and fragmentable tandem photosensitive nanocrystal skins. Nanoscale, 2016, 8, 4495-4503.	2.8	5
201	Quantum Dots and Quantum Rods. Nanoscience and Technology, 2019, , 29-51.	1.5	5
202	Photoluminescence properties of self-assembled chitosan-based composites containing semiconductor nanocrystals. Physical Chemistry Chemical Physics, 2019, 21, 4831-4838.	1.3	5
203	Synthesis and characterisation of NIR-emitting nanocrystals for photonic and optoelectronic applications. Photonics and Nanostructures - Fundamentals and Applications, 2007, 5, 113-118.	1.0	4
204	Light emission from three-dimensional ensembles of CdTe nanocrystal wires templated in nanotubes of chrysotile asbestos. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 37, 218-221.	1.3	4
205	Optical limiting in CdTe nanocrystals embedded in polystyrene. Proceedings of SPIE, 2009, , .	0.8	4
206	Incoherent photon conversion in selectively infiltrated hollow-core photonic crystal fibers for single photon generation in the near infrared. Optics Express, 2012, 20, 11536.	1.7	4
207	Selectively Tunable Luminescence of Perovskite Nanocrystals Embedded in Polymer Matrix Allows Direct Laser Patterning. Advanced Optical Materials, 2022, 10, .	3.6	4
208	Stimulated emission due to light localization in the bandgap of disordered opals. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 1522-1530.	0.8	3
209	Synthesis and Assembling of Semiconductor and Metal Nanocrystals. Zeitschrift Fur Physikalische Chemie, 2007, 221, 307-317.	1.4	3
210	Emission pattern of planar CdTe nanocrystal light source coated by two-dimensional Langmuir-Blodgett photonic crystal. Materials Science and Engineering C, 2007, 27, 968-971.	3.8	3
211	Large energy transfer distance to a plane of gold nanoparticles. , 2012, , .		3
212	Enzyme-Encapsulated Quantum Dot Hydrogels in the Development of Biosensors: A Multifunctional Platform for Both Bio-Catalysis and Fluorescent Probing. ECS Transactions, 2013, 50, 255-258.	0.3	3
213	Incorporation of CdTe Nanocrystals into Metal Oxide Matrices Towards Inorganic Nanocomposite Materials. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1335-1352.	1.4	3
214	All-Inorganic and Hybrid Capping of Nanocrystals as Key to Their Application-Relevant Processing. MRS Advances, 2018, 3, 2923-2930.	0.5	3
215	Colloidally synthesised semiconductor nanocrystals in resonant cavity light emitting devices. Electronics Letters, 2002, 38, 1373.	0.5	2
216	Etching of Colloidal InP Nanocrystals with Fluorides: Photochemical Nature of the Process Resulting in High Photoluminescence Efficiency ChemInform, 2003, 34, no.	0.1	2

#	Article	IF	CITATIONS
217	Light propagation in opal heterojunctions. , 2004, , .		2
218	Interaction of surface plasmons with CdTe quantum dot excitons. , 2005, , .		2
219	Simultane Bestimmung spektraler Eigenschaften und Größen von multiplen Partikeln in Lösung mit Subnanometerâ€Aufl¶sung. Angewandte Chemie, 2016, 128, 11944-11949.	1.6	2
220	Tri(pyrazolyl)phosphane als Vorstufen für die Synthese von stark emittierenden InP/ZnSâ€Quantenpunkten. Angewandte Chemie, 2017, 129, 14932-14937.	1.6	2
221	Photonic Crystals Based on Two-Layer Opaline Heterostructures. Materials Research Society Symposia Proceedings, 2002, 722, 771.	0.1	2
222	Optical Characterization of Cadmium Telluride Doped Heterostructured Opaline Photonic Crystal. Materials Research Society Symposia Proceedings, 2001, 708, 781.	0.1	1
223	Highly emissive nanowires grown from CdTe nanocrystals in a phosphate buffer solution. , 2005, 5824, 123.		1
224	Coupled cavity modes in photonic molecules with semiconductor nanocrystals. , 2005, , .		1
225	Modification of Photon States in Photonic Molecules with Semiconductor Nanocrystals. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2005, 99, 493.	0.2	1
226	Light Emitting Opal-Based Photonic Crystal Heterojunctions. , 2006, , 132-152.		1
227	Radiation pressure induced splitting of resonant modes in a nanocrystal-coated microcavity. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 3689-3692.	0.8	1
228	Effect of template defects in radiative energy relaxation of CdTe nanocrystals in nanotubes of chrysotile asbestos. Microporous and Mesoporous Materials, 2008, 107, 212-218.	2.2	1
229	Multi-layered CdSe/ZnS/CdSe heteronanocrystals to generate and tune white light. , 2008, , .		1
230	Influence of intra-ensemble energy transfer on the properties of nanocrystal quantum dot structures and devices. , 2010, , .		1
231	Electrochemical Patterning of Polyaniline on Insulating Substrates. Zeitschrift Fur Physikalische Chemie, 2011, 225, 373-378.	1.4	1
232	Enhanced quantum efficiency in mixed donor-acceptor nanocrystal quantum dot monolayers. , 2011, , .		1
233	A Versatile Approach for a Variety of Amphiphilic Nanoparticles: Semiconductor – Plasmonic – Magnetic. Zeitschrift Fur Physikalische Chemie, 2014, 228, 171-181.	1.4	1

234 Chiral Ag nanostructure arrays as optical antennas. , 2015, , .

1

#	Article	IF	CITATIONS
235	Semiconductor Nanocrystals: Liquid–Liquid Diffusionâ€Assisted Crystallization: A Fast and Versatile Approach Toward High Quality Mixed Quantum Dotâ€&alt Crystals (Adv. Funct. Mater. 18/2015). Advanced Functional Materials, 2015, 25, 2783-2783.	7.8	1
236	Enhancing FÃ \P rster nonradiative energy transfer via plasmon interaction. , 2016, , .		1
237	Frontispiece: Alloying Behavior of Self-Assembled Noble Metal Nanoparticles. Chemistry - A European Journal, 2016, 22, .	1.7	1
238	Photoelectrochemical Properties of Nanoheterostructures Based on Titanium Dioxide and Ag-In-S Quantum Dots Produced by Size-Selective Precipitation. Theoretical and Experimental Chemistry, 2017, 53, 251-258.	0.2	1
239	A New Approach to Crystallization of CdSe Nanoparticles into Ordered Three-Dimensional Superlattices. , 2001, 13, 1868.		1
240	Color Enrichment Solids of Spectrally Pure Colloidal Quantum Wells for Wide Color Span in Displays. Advanced Optical Materials, 2022, 10, .	3.6	1
241	Optically Detected Magnetic Resonance Study of Core-Shell and Alloy Nanocrystals of HgTe and CdS. Materials Research Society Symposia Proceedings, 2001, 692, 1.	0.1	0
242	Optical Characterization of Cadmium Telluride Doped Heterostructured Opaline Photonic Crystal. Materials Research Society Symposia Proceedings, 2001, 694, 1.	0.1	0
243	Optical Characterization of Cadmium Telluride Doped Heterostructured Opaline Photonic Crystal. Materials Research Society Symposia Proceedings, 2001, 707, 781.	0.1	0
244	Emission in the ballistic propagation regime of colloidal photonic crystals. , 2003, , .		0
245	Emission modification in heterostructured opal photonic crystals. , 0, , .		0
246	Coupled cavity modes in photonic molecules. , 0, , .		0
247	Enhanced coupling of electronic and photonic states in a microcavity-quantum dot system. , 2005, , .		0
248	Photonic molecules modes in resonantly coupled spherical microcavities with semiconductor nanocrystals. , 2005, , .		0
249	SIZE-DEPENDENT ELECTROCHEMICAL BEHAVIOR OF THIOL-CAPPED NANOCRYSTALS. , 2005, , .		0
250	The Assembling of Semiconductor Nanocrystals. ChemInform, 2005, 36, no.	0.1	0
251	Photobleaching and resonant mode shift in a microsphere-quantum dot system. , 0, , .		0
252	Wavelength tunable optical mode lifetimes in photonic molecules: new concept for multiplexing and delaying an optical signal. , 0, , .		0

#	Article	IF	CITATIONS
253	Photonic molecules: a new concept for wavelength tunable optical delay. , 0, , .		0
254	Strong coupling of optical modes in photonic molecules with CdTe nanocrystals. , 0, , .		0
255	Metal surface enhanced emission from CdTe quantum dots. , 0, , .		0
256	Ordered bimetallic nanostructures with hierarchical porosity and their applications. , 2006, 6182, 336.		0
257	Highly emissive CdTe nanowires grown in a phosphate buffer solution. , 2007, , .		0
258	White CdS Nanoluminophore based Tunable Hybrid Light Emitting Diodes. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	0
259	Self-assembled macroscopic structures of gold nanoparticles. Proceedings of SPIE, 2007, , .	0.8	0
260	<title>Colloidal nanocrystals: on the way from synthesis to applications</title> ., 2007, , .		0
261	NIR-emitting nanocrystals for photonic applications. , 2007, , .		Ο
262	Highly emissive CdTe nanowires grown in a phosphate buffer solution: FLIM imaging and spectroscopic studies. Proceedings of SPIE, 2007, , .	0.8	0
263	Photonic molecules modes in resonantly coupled spherical microcavities with semiconductor nanocrystals. , 2007, , .		Ο
264	Surface-state emission enhancement in white-luminophor CdS nanocrystals using localized plasmon coupling. , 2008, , .		0
265	Size dependent nonlinear properties of thiol-capped CdTe QDs. , 2009, , .		0
266	Architectural tuning of color chromaticity by controlled nonradiative resonance energy transfer in CdTe nanocrystal solids. , 2009, , .		0
267	Manufacturing of a Nanocrystal-based LED by Layer-by-Layer Deposition. ECS Transactions, 2009, 25, 37-40.	0.3	0
268	Formâ€anisotropy of 2D nanostructures: Modeling approaches comparison. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2834-2838.	0.8	0
269	The use of nanocrystals with emission in the visible or near infrared and their applications for photonics and optoelectronics. Proceedings of SPIE, 2009, , .	0.8	Ο
270	Gels and aerogels from colloidal nanocrystals. , 2010, , .		0

Gels and aerogels from colloidal nanocrystals. , 2010, , . 270

#	Article	IF	CITATIONS
271	Optical limiting in polystyrene embedded nanocrystals. , 2010, , .		Ο
272	Influence of localised surface plasmons on energy transfer between quantum dots. , 2010, , .		0
273	Observation of anisotropic emission from semiconductor quantum dots in nanocomposites of metal nanoparticles. , 2010, , .		0
274	Modification of the FRET rate in quantum dot structures. , 2011, , .		0
275	All - Optical spatial light modulator using CdTe quantum dots. , 2011, , .		0
276	Emissive Semiconductor Nanocrystals: Recent Progress. ECS Transactions, 2012, 45, 61-66.	0.3	0
277	Enhancement effects in plasmonic nanocavities with quantum emitters. , 2012, , .		0
278	Large-area (> 50 cm × 50 cm), freestanding, flexible, optical membranes of Cd-free nanocrystal quantum dots. , 2012, , .		0
279	A novel concept to generate single photons: incoherent conversion from the visible into the infrared spectrum. Proceedings of SPIE, 2013, , .	0.8	0
280	Effect of Electrochemical Charge Injection on the Photoluminescence Properties of CdSe Quantum Dot Monolayers Anchored to Oxide Substrates. Zeitschrift Fur Physikalische Chemie, 2013, , 130311033635007.	1.4	0
281	NANOCRYSTALS IN INORGANIC MATRICES: MATERIALS WITH ROBUST PERFORMANCE. , 2013, , .		0
282	ENHANCEMENT EFFECTS AT JUNCTIONS OF CROSSED SILVER NANOWIRES WITH J-AGGREGATES. , 2013, , .		0
283	Aqueous Synthesis of Colloidal CdTe Nanocrystals. , 2013, , 23-59.		0
284	Aqueous based colloidal quantum dots for optoelectronics. , 0, , 30-58.		0
285	Exciton transfer and polarized emission in colloidal quantum dot - anthracene crystals. , 2015, , .		0
286	Congratulations to Alexander Eychmüller. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1263-1266.	1.4	0
287	SYNTHESIS AND OPTICAL PROPERTIES OF WATER SOLUBLE ZnSe NANOCRYSTALS. , 2001, , .		0
288	LUMINESCENT CODING BY QUANTUM DOTS: MICROCAPSULES LOADED WITH SEMICONDUCTOR NANOCRYSTALS. , 2003, , .		0

#	Article	IF	CITATIONS
289	WHISPERING GALLERY MODE EMISSION FROM A CORE-SHELL SYSTEM OF CdTe NANOCRYSTALS ON A SPHERICAL MICROCAVITY. , 2003, , .		0
290	COVALENT LINKING OF SEMICONDUCTOR NANOCRYSTALS TO AMINO-FUNCTIONALIZED SURFACES. , 2005, , .		0
291	Ultrafast Interfacial Carrier Dynamics in UV-Blue Photoluminescing ZnSe Nanoparticles. , 2006, , .		0
292	Ultrafast Interfacial Carrier Dynamics in UV-Blue Photoluminescing ZnSe Nanoparticles. Springer Series in Chemical Physics, 2007, , 698-700.	0.2	0
293	ELECTROCHEMICAL STUDY OF PHOTOCHEMICALLY TREATED THIOL-CAPPED ZnSe(S) NANOCRYSTALS. , 2007, , .		0
294	Strong Luminescence in 1500 nm from HgTe Colloidal Quantum Dots Infiltrated in a Photonic Crystal Lattice. , 2008, , .		0
295	FABRICATION OF NANOCRYSTAL LEDS BY LAYER-BY-LAYER DEPOSITION. , 2009, , .		0
296	GELS AND AEROGELS FROM COLLOIDAL NANOCRYSTALS. , 2009, , .		0
297	QUANTUM DOTS IN ROBUST MATRICES: STATE OF THE ART. , 2017, , 251-256.		Ο