
Reza Montazami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6619436/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Capacitance of Flexible Polymer/Graphene Microstructures with High Mechanical Strength. 3D Printing and Additive Manufacturing, 2024, 11, 242-250.	1.4	2
2	Transient Electronics as Sustainable Systems: From Fundamentals to Applications. Advanced Sustainable Systems, 2022, 6, 2100057.	2.7	26
3	Graphene Microelectrodes for Real-Time Impedance Spectroscopy of Neural Cells. ACS Applied Bio Materials, 2022, 5, 113-122.	2.3	6
4	Synthesis and characterization of Poly(ethylene glycol)-based segmented ionenes block copolymer with aliphatic or DABCO hard segments. Polymer, 2022, 242, 124543.	1.8	4
5	Microfluidic Seeding of Cells on the Inner Surface of Alginate Hollow Microfibers. Advanced Healthcare Materials, 2022, 11, e2102701.	3.9	10
6	Minute-sensitive real-time monitoring of neural cells through printed graphene microelectrodes. Biosensors and Bioelectronics, 2022, 210, 114284.	5.3	7
7	Machine learning-assisted E-jet printing for manufacturing of organic flexible electronics. Biosensors and Bioelectronics, 2022, 212, 114418.	5.3	4
8	The influence of spacer composition on thermomechanical properties, crystallinity, and morphology in ionene segmented copolymers. Soft Matter, 2021, 17, 5508-5523.	1.2	2
9	Advancement of Sensor Integrated Organ-on-Chip Devices. Sensors, 2021, 21, 1367.	2.1	60
10	Protein-assisted scalable mechanochemical exfoliation of few-layer biocompatible graphene nanosheets. Royal Society Open Science, 2021, 8, 200911.	1.1	2
11	Progress of graphene devices for electrochemical biosensing in electrically excitable cells. Progress in Biomedical Engineering, 2021, 3, 022003.	2.8	1
12	Targeted Microfluidic Manufacturing to Mimic Biological Microenvironments: Cell-Encapsulated Hollow Fibers. ACS Macro Letters, 2021, 10, 732-736.	2.3	14
13	Recent Advances in Microfluidically Spun Microfibers for Tissue Engineering and Drug Delivery Applications. Annual Review of Analytical Chemistry, 2021, 14, 185-205.	2.8	3
14	How do neuroglial cells respond to ultrasound induced cavitation?. AIP Advances, 2021, 11, .	0.6	2
15	Behavior of Neural Cells Post Manufacturing and After Prolonged Encapsulation within Conductive Graphene‣aden Alginate Microfibers. Advanced Biology, 2021, 5, e2101026.	1.4	12
16	Enhancing the Conductivity of Cell-Laden Alginate Microfibers With Aqueous Graphene for Neural Applications. Frontiers in Materials, 2020, 7, .	1.2	20
17	Study of Partially Transient Organic Epidermal Sensors. Materials, 2020, 13, 1112.	1.3	5
18	Characterization of Astrocytic Response after Experiencing Cavitation In Vitro. Global Challenges, 2020, 4, 1900014.	1.8	2

2

#	Article	IF	CITATIONS
19	High-Yield Production of Aqueous Graphene for Electrohydrodynamic Drop-on-Demand Printing of Biocompatible Conductive Patterns. Biosensors, 2020, 10, 6.	2.3	29
20	Active Transiency: A Novel Approach to Expedite Degradation in Transient Electronics. Materials, 2020, 13, 1514.	1.3	5
21	Hybrid Cellulose-Glass Fiber Composites for Automotive Applications. Materials, 2019, 12, 3189.	1.3	32
22	Study of Agave Fiber-Reinforced Biocomposite Films. Materials, 2019, 12, 99.	1.3	16
23	Investigation of cavitation-induced damage on PDMS films. Analytical Methods, 2019, 11, 5038-5043.	1.3	2
24	Shear at Fluid-Fluid Interfaces Affects the Surface Topologies of Alginate Microfibers. Clean Technologies, 2019, 1, 265-272.	1.9	7
25	Viability of Neural Cells on 3D Printed Graphene Bioelectronics. Biosensors, 2019, 9, 112.	2.3	23
26	Photo-Cross-Linked Poly(ethylene glycol) Diacrylate Hydrogels: Spherical Microparticles to Bow Tie-Shaped Microfibers. ACS Applied Materials & Interfaces, 2019, 11, 18797-18807.	4.0	27
27	Microfluidic Manufacturing of Alginate Fibers with Encapsulated Astrocyte Cells. ACS Applied Bio Materials, 2019, 2, 1603-1613.	2.3	29
28	Placentaâ€onâ€aâ€Chip: In Vitro Study of Caffeine Transport across Placental Barrier Using Liquid Chromatography Mass Spectrometry. Global Challenges, 2019, 3, 1800112.	1.8	75
29	3D Microfibrous Scaffolds Selectively Promotes Proliferation and Glial Differentiation of Adult Neural Stem Cells: A Platform to Tune Cellular Behavior in Neural Tissue Engineering. Macromolecular Bioscience, 2019, 19, e1800236.	2.1	27
30	Controlled positioning of microbubbles and induced cavitation using a dual-frequency transducer and microfiber adhesion techniques. Ultrasonics Sonochemistry, 2018, 43, 114-119.	3.8	10
31	Study of cellulose nanocrystal doped starch-polyvinyl alcohol bionanocomposite films. International Journal of Biological Macromolecules, 2018, 107, 2065-2074.	3.6	95
32	Synthesis of Graphene Nanosheets through Spontaneous Sodiation Process. Journal of Carbon Research, 2018, 4, 42.	1.4	18
33	Engineering ionic conductivity of ionomeric membranes: influence of Van der Waals volume of counterions and temperature. Materials Research Express, 2018, 5, 065325.	0.8	3
34	Interfacial Stress in Physically Transient Layered Structures: An Experimental and Analytical Approach. Advanced Materials Interfaces, 2017, 4, 1601076.	1.9	8
35	Fluidâ€Induced Alignment of Carbon Nanofibers in Polymer Fibers. Macromolecular Materials and Engineering, 2017, 302, 1600544.	1.7	9
36	Study of Interfacial Interactions in Physically Transient Soft Layered Structures: A Step toward Understanding Interfacial Bonding and Failure in Soft Degradable Structures. Advanced Engineering Materials, 2017, 19, 1700139.	1.6	3

#	Article	IF	CITATIONS
37	Graphene as a flexible electrode: review of fabrication approaches. Journal of Materials Chemistry A, 2017, 5, 17777-17803.	5.2	113
38	Microfibers as Physiologically Relevant Platforms for Creation of 3D Cell Cultures. Macromolecular Bioscience, 2017, 17, 1700279.	2.1	34
39	Electrochemical and morphological studies of ionic polymer metal composites as stress sensors. Measurement: Journal of the International Measurement Confederation, 2017, 95, 128-134.	2.5	13
40	Soft Ionic Electroactive Polymer Actuators with Tunable Non-Linear Angular Deformation. Materials, 2017, 10, 664.	1.3	15
41	Influence of Temperature on the Electromechanical Properties of Ionic Liquid-Doped Ionic Polymer-Metal Composite Actuators. Polymers, 2017, 9, 358.	2.0	19
42	Transient Biocompatible Polymeric Platforms for Long-Term Controlled Release of Therapeutic Proteins and Vaccines. Materials, 2016, 9, 321.	1.3	10
43	Study of mechanics of physically transient electronics: A step toward controlled transiency. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 517-524.	2.4	17
44	Physical-chemical hybrid transiency: A fully transient li-ion battery based on insoluble active materials. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2021-2027.	2.4	26
45	Polycaprolactone Microfibrous Scaffolds to Navigate Neural Stem Cells. Biomacromolecules, 2016, 17, 3287-3297.	2.6	60
46	Fiber Based Approaches as Medicine Delivery Systems. ACS Biomaterials Science and Engineering, 2016, 2, 1411-1431.	2.6	86
47	Mechanical and physical properties of poly(vinyl alcohol) microfibers fabricated by a microfluidic approach. RSC Advances, 2016, 6, 55343-55353.	1.7	32
48	Mechanics of Interfacial Bonding in Dissimilar Soft Transient Materials and Electronics. MRS Advances, 2016, 1, 2501-2511.	0.5	2
49	Transient bioelectronics: Electronic properties of silver microparticle-based circuits on polymeric substrates subjected to mechanical load. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1603-1610.	2.4	24
50	Microfluidic Organâ€onâ€a hip Technology for Advancement of Drug Development and Toxicology. Advanced Healthcare Materials, 2015, 4, 1426-1450.	3.9	164
51	lonic electroactive polymer actuators as active microfluidic mixers. Analytical Methods, 2015, 7, 10217-10223.	1.3	17
52	lonic Liquid-Doped Gel Polymer Electrolyte for Flexible Lithium-Ion Polymer Batteries. Materials, 2015, 8, 2735-2748.	1.3	48
53	Synthesis of Er ³⁺ /Yb ³⁺ codoped NaMnF ₃ nanocubes with single-band red upconversion luminescence. RSC Advances, 2014, 4, 61891-61897.	1.7	17
54	Investigation of spray-coated silver-microparticle electrodes for ionic electroactive polymer actuators. Journal of Applied Physics, 2014, 115, .	1.1	16

#	Article	IF	CITATIONS
55	Study of Physically Transient Insulating Materials as a Potential Platform for Transient Electronics and Bioelectronics. Advanced Functional Materials, 2014, 24, 4135-4143.	7.8	127
56	On-chip development of hydrogel microfibers from round to square/ribbon shape. Journal of Materials Chemistry A, 2014, 2, 4878.	5.2	57
57	The single-band red upconversion luminescence from morphology and size controllable Er3+/Yb3+ doped MnF2 nanostructures. Journal of Materials Chemistry C, 2014, 2, 1736.	2.7	51
58	Nonlinear dynamic modeling of ionic polymer conductive network composite actuators using rigid finite element method. Sensors and Actuators A: Physical, 2014, 217, 168-182.	2.0	24
59	Influence of ionic liquid concentration on the electromechanical performance of ionic electroactive polymer actuators. Organic Electronics, 2014, 15, 2982-2987.	1.4	21
60	Evidence of counterion migration in ionic polymer actuators via investigation of electromechanical performance. Sensors and Actuators B: Chemical, 2014, 205, 371-376.	4.0	23
61	Green colouring electrochromic devices of water-soluble polythiophene. Nanomaterials and Energy, 2014, 3, 215-221.	0.1	3
62	Miniaturized biological and electrochemical fuel cells: challenges and applications. Physical Chemistry Chemical Physics, 2013, 15, 14147.	1.3	67
63	Advanced Gel Polymer Electrolyte for Lithium-Ion Polymer Batteries. , 2013, , .		8
64	Using Shewanella Oneidensis MR1 as a Biocatalyst in a Microscale Microbial Fuel Cell. , 2013, , .		0
65	Ionic Electroactive Polymer Actuators for On-Chip Sample Processing Integrated With Microflow Cytometer. , 2013, , .		0
66	The Effect of Ionic Liquid Uptake and Self-assembled Conductive Network Composite Layers on NafionTM based Ionic Polymer Metal Composite Electromechanical Bending Actuators. Materials Research Society Symposia Proceedings, 2013, 1575, 1.	0.1	1
67	Influence of conductive network composite structure on the electromechanical performance of ionic electroactive polymer actuators. International Journal of Smart and Nano Materials, 2012, 3, 204-213.	2.0	19
68	Equivalent circuit modeling of ionomer and ionic polymer conductive network composite actuators containing ionic liquids. Sensors and Actuators A: Physical, 2012, 181, 70-76.	2.0	31
69	Enhanced thermomechanical properties of a nematic liquid crystal elastomer doped with gold nanoparticles. Sensors and Actuators A: Physical, 2012, 178, 175-178.	2.0	36
70	A Microfluidic Reactor for Energy Applications. Open Journal of Applied Biosensor, 2012, 01, 21-25.	1.6	12
71	Thickness dependence of curvature, strain, and response time in ionic electroactive polymer actuators fabricated via layer-by-layer assembly. Journal of Applied Physics, 2011, 109, .	1.1	46
72	Influence of the conductor network composites on the electromechanical performance of ionic polymer conductor network composite actuators. Sensors and Actuators A: Physical, 2010, 157, 267-275.	2.0	46

#	Article	IF	CITATIONS
73	High contrast asymmetric solid state electrochromic devices based on layer-by-layer deposition of polyaniline and poly(aniline sulfonic acid). Electrochimica Acta, 2010, 56, 990-994.	2.6	44
74	lon transport and storage of ionic liquids in ionic polymer conductor network composites. Applied Physics Letters, 2010, 96, .	1.5	66
75	Fast response of actuators with self assembly nanoparticle electrodes and ionic liquids. , 2010, , .		0
76	Transports of ionic liquids in ionic polymer conductor network composite actuators. Proceedings of SPIE, 2010, , .	0.8	2
77	Basins of attraction of tapping mode atomic force microscopy with capillary force interactions. Applied Physics Letters, 2009, 94, 251902.	1.5	3
78	Investigating a few key issues of ionomeric polymer conductive network composite electromechanical transducers. , 2009, , .		0
79	Layer-by-layer self-assembled conductor network composites in ionic polymer metal composite actuators with high strain response. Applied Physics Letters, 2009, 95, 023505.	1.5	39
80	Synthesis and Characterization of Regioregular Water-Soluble 3,4-Propylenedioxythiophene Derivative and Its Application in the Fabrication of High-Contrast Solid-State Electrochromic Devices. Macromolecules, 2009, 42, 135-140.	2.2	45
81	High-Contrast Solid-State Electrochromic Devices of Viologen-Bridged Polysilsesquioxane Nanoparticles Fabricated by Layer-by-Layer Assembly. ACS Applied Materials & Interfaces, 2009, 1, 83-89.	4.0	77
82	Solid‣tate Electrochromic Devices via Ionic Selfâ€Assembled Multilayers (ISAM) of a Polyviologen. Macromolecular Chemistry and Physics, 2008, 209, 150-157.	1.1	22
83	Millisecond switching in solid state electrochromic polymer devices fabricated from ionic self-assembled multilayers. Applied Physics Letters, 2008, 92, .	1.5	53
84	High contrast solid state electrochromic devices based on Ruthenium Purple nanocomposites fabricated by layer-by-layer assembly. Chemical Communications, 2008, , 3663.	2.2	24
85	MEMS-based gas chromatography columns with nano-structured stationary phases. , 2008, , .		6
86	Modification of single-walled carbon nanotube electrodes by layer-by-layer assembly for electrochromic devices. Journal of Applied Physics, 2008, 103, .	1.1	11