
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6619201/publications.pdf Version: 2024-02-01

ΙΙΔΝ ΥΔΝΟ

#	Article	IF	CITATIONS
1	VFDB: a reference database for bacterial virulence factors. Nucleic Acids Research, 2004, 33, D325-D328.	6.5	1,287
2	VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Research, 2019, 47, D687-D692.	6.5	1,286
3	VFDB 2016: hierarchical and refined dataset for big data analysis—10 years on. Nucleic Acids Research, 2016, 44, D694-D697.	6.5	1,188
4	Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chinese Medical Journal, 2020, 133, 1015-1024.	0.9	928
5	VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors. Nucleic Acids Research, 2012, 40, D641-D645.	6.5	457
6	Genome sequence of Shigella flexneri 2a: insights into pathogenicity through comparison with genomes of Escherichia coli K12 and O157. Nucleic Acids Research, 2002, 30, 4432-4441.	6.5	431
7	VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Research, 2022, 50, D912-D917.	6.5	372
8	Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nucleic Acids Research, 2005, 33, 6445-6458.	6.5	361
9	Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated <i>Pseudomonas stutzeri</i> A1501. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7564-7569.	3.3	325
10	Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases. ISME Journal, 2016, 10, 609-620.	4.4	249
11	Virome Analysis for Identification of Novel Mammalian Viruses in Bat Species from Chinese Provinces. Journal of Virology, 2012, 86, 10999-11012.	1.5	244
12	A Pseudomonas aeruginosa Type VI Secretion Phospholipase D Effector Targets Both Prokaryotic and Eukaryotic Cells. Cell Host and Microbe, 2014, 15, 600-610.	5.1	230
13	Cold-chain food contamination as the possible origin of COVID-19 resurgence in Beijing. National Science Review, 2020, 7, 1861-1864.	4.6	175
14	Comparative analysis of rodent and small mammal viromes to better understand the wildlife origin of emerging infectious diseases. Microbiome, 2018, 6, 178.	4.9	150
15	Unbiased Parallel Detection of Viral Pathogens in Clinical Samples by Use of a Metagenomic Approach. Journal of Clinical Microbiology, 2011, 49, 3463-3469.	1.8	147
16	VFDB 2008 release: an enhanced web-based resource for comparative pathogenomics. Nucleic Acids Research, 2007, 36, D539-D542.	6.5	138
17	Clinically prevalent mutations in Mycobacterium tuberculosis alter propionate metabolism and mediate multidrug tolerance. Nature Microbiology, 2018, 3, 1032-1042.	5.9	132
18	DBatVir: the database of bat-associated viruses. Database: the Journal of Biological Databases and Curation, 2014, 2014, bau021.	1.4	123

#	Article	IF	CITATIONS
19	Revisiting the Molecular Evolutionary History of Shigella spp Journal of Molecular Evolution, 2007, 64, 71-79.	0.8	107
20	Gut microbiota associated with pulmonary tuberculosis and dysbiosis caused by anti-tuberculosis drugs. Journal of Infection, 2019, 78, 317-322.	1.7	82
21	Transcriptional Profiles of the Response to Ketoconazole and Amphotericin B in Trichophyton rubrum. Antimicrobial Agents and Chemotherapy, 2007, 51, 144-153.	1.4	74
22	Complete genome sequence of Shigella flexneri 5b and comparison with Shigella flexneri 2a. BMC Genomics, 2006, 7, 173.	1.2	69
23	The use of global transcriptional analysis to reveal the biological and cellular events involved in distinct development phases of Trichophyton rubrum conidial germination. BMC Genomics, 2007, 8, 100.	1.2	67
24	Complete Genome Sequence of Haemophilus parasuis SH0165. Journal of Bacteriology, 2009, 191, 1359-1360.	1.0	67
25	Characterization of ST-4821 complex, a unique Neisseria meningitidis clone. Genomics, 2008, 91, 78-87.	1.3	66
26	Global transcriptional analysis of nitrogen fixation and ammonium repression in root-associated Pseudomonas stutzeri A1501. BMC Genomics, 2010, 11, 11.	1.2	65
27	The molecular evolutionary history of Shigella spp. and enteroinvasive Escherichia coli. Infection, Genetics and Evolution, 2009, 9, 147-152.	1.0	60
28	Complete Genome Sequence of the Nitrogen-Fixing and Rhizosphere-Associated Bacterium Pseudomonas stutzeri Strain DSM4166. Journal of Bacteriology, 2011, 193, 3422-3423.	1.0	58
29	Recent dermatophyte divergence revealed by comparative and phylogenetic analysis of mitochondrial genomes. BMC Genomics, 2009, 10, 238.	1.2	46
30	Causative Species and Serotypes of Shigellosis in Mainland China: Systematic Review and Meta-Analysis. PLoS ONE, 2012, 7, e52515.	1.1	45
31	A Whole-genome Sequencing Analysis of Neisseria gonorrhoeae Isolates in China: An Observational Study. EClinicalMedicine, 2019, 7, 47-54.	3.2	45
32	Genome-wide Identification and Characterization of a Superfamily of Bacterial Extracellular Contractile Injection Systems. Cell Reports, 2019, 29, 511-521.e2.	2.9	44
33	Analysis of the dermatophyte Trichophyton rubrum expressed sequence tags. BMC Genomics, 2006, 7, 255.	1.2	43
34	Decoding the RNA viromes in rodent lungs provides new insight into the origin and evolutionary patterns of rodent-borne pathogens in Mainland Southeast Asia. Microbiome, 2021, 9, 18.	4.9	43
35	GenomeComp: a visualization tool for microbial genome comparison. Journal of Microbiological Methods, 2003, 54, 423-426.	0.7	42
36	Bacterial Genome-Wide Association Identifies Novel Factors That Contribute to Ethionamide and Prothionamide Susceptibility in Mycobacterium tuberculosis. MBio, 2019, 10, .	1.8	39

#	Article	IF	CITATIONS
37	Proteomic profile of dormant Trichophyton Rubrum conidia. BMC Genomics, 2008, 9, 303.	1.2	36
38	The first succinylome profile of Trichophyton rubrum reveals lysine succinylation on proteins involved in various key cellular processes. BMC Genomics, 2017, 18, 577.	1.2	36
39	The First Whole-Cell Proteome- and Lysine-Acetylome-Based Comparison between <i>Trichophyton rubrum</i> Conidial and Mycelial Stages. Journal of Proteome Research, 2018, 17, 1436-1451.	1.8	36
40	Complete Genome Sequence of the Extremophilic <i>Bacillus cereus</i> Strain Q1 with Industrial Applications. Journal of Bacteriology, 2009, 191, 1120-1121.	1.0	35
41	Complete Genome Sequence of the Neonatal-Meningitis-Associated Escherichia coli Strain CE10. Journal of Bacteriology, 2011, 193, 7005-7005.	1.0	34
42	Integrated microRNA and mRNA analysis in the pathogenic filamentous fungus Trichophyton rubrum. BMC Genomics, 2018, 19, 933.	1.2	32
43	The use of comparative genomic hybridization to characterize genome dynamics and diversity among the serotypes of Shigella. BMC Genomics, 2006, 7, 218.	1.2	31
44	Analysis of the Secretome and Identification of Novel Constituents from Culture Filtrate of Bacillus Calmette-Guérin Using High-resolution Mass Spectrometry. Molecular and Cellular Proteomics, 2013, 12, 2081-2095.	2.5	31
45	Full Genome of Influenza A (H7N9) Virus Derived by Direct Sequencing without Culture. Emerging Infectious Diseases, 2013, 19, 1881-4.	2.0	30
46	The impact of combined gene mutations in <i>inhA</i> and <i>ahpC</i> genes on high levels of isoniazid resistance amongst <i>katG</i> non-315 in multidrug-resistant tuberculosis isolates from China. Emerging Microbes and Infections, 2018, 7, 1-10.	3.0	30
47	Transcriptional profiles of response to terbinafine in Trichophyton rubrum. Applied Microbiology and Biotechnology, 2009, 82, 1123-1130.	1.7	28
48	Comprehensive Proteomic Analysis ofShigellaflexneri2a Membrane Proteins. Journal of Proteome Research, 2006, 5, 1860-1865.	1.8	27
49	TrED: the Trichophyton rubrum Expression Database. BMC Genomics, 2007, 8, 250.	1.2	27
50	ShiBASE: an integrated database for comparative genomics of Shigella. Nucleic Acids Research, 2006, 34, D398-D401.	6.5	25
51	ZOVER: the database of zoonotic and vector-borne viruses. Nucleic Acids Research, 2022, 50, D943-D949.	6.5	25
52	Evaluating de Bruijn Graph Assemblers on 454 Transcriptomic Data. PLoS ONE, 2012, 7, e51188.	1.1	24
53	Structural insights into VirB-DNA complexes reveal mechanism of transcriptional activation of virulence genes. Nucleic Acids Research, 2013, 41, 10529-10541.	6.5	24
54	Prevalence of 10 Human Polyomaviruses in Fecal Samples from Children with Acute Gastroenteritis: a Case-Control Study. Journal of Clinical Microbiology, 2013, 51, 3107-3109.	1.8	24

#	Article	IF	CITATIONS
55	DRodVir: A resource for exploring the virome diversity in rodents. Journal of Genetics and Genomics, 2017, 44, 259-264.	1.7	23
56	Bacterial Genotoxin Accelerates Transient Infection–Driven Murine Colon Tumorigenesis. Cancer Discovery, 2022, 12, 236-249.	7.7	23
57	Genome-wide dissection reveals diverse pathogenic roles of bacterial Tc toxins. PLoS Pathogens, 2021, 17, e1009102.	2.1	21
58	cDNA microarray analysis of the expression profiles of Trichophyton rubrum in response to novel synthetic fatty acid synthase inhibitor PHS11A. Fungal Genetics and Biology, 2007, 44, 1252-1261.	0.9	20
59	Subclinical Infection with the Novel Influenza A (H1N1) Virus. Clinical Infectious Diseases, 2009, 49, 1622-1623.	2.9	20
60	Metagenomic analysis of the lung microbiome in pulmonary tuberculosis - a pilot study. Emerging Microbes and Infections, 2020, 9, 1444-1452.	3.0	19
61	Effective siRNAs inhibit the replication of novel influenza A (H1N1) virus. Antiviral Research, 2010, 85, 559-561.	1.9	18
62	A comprehensive proteomic analysis of Mycobacterium bovis bacillus Calmette–Guérin using high resolution Fourier transform mass spectrometry. Journal of Proteomics, 2012, 77, 357-371.	1.2	18
63	Characterization of serogroup C meningococci isolated from 14 provinces of China during 1966–2005 using comparative genomic hybridization. Science in China Series C: Life Sciences, 2007, 50, 1-6.	1.3	17
64	Proteome-Wide Identification of Lysine Propionylation in the Conidial and Mycelial Stages of Trichophyton rubrum. Frontiers in Microbiology, 2019, 10, 2613.	1.5	17
65	Identification and characterization of simple sequence repeats in the genomes of Shigella species. Gene, 2003, 322, 85-92.	1.0	16
66	Draft Genome of a Brazilian Avian-Pathogenic Escherichia coli Strain and <i>In Silico</i> Characterization of Virulence-Related Genes. Journal of Bacteriology, 2012, 194, 3023-3023.	1.0	16
67	The prevalence of STL polyomavirus in stool samples from Chinese children. Journal of Clinical Virology, 2015, 66, 19-23.	1.6	16
68	Cultured Bacteria Provide Insight into the Functional Potential of the Coral-Associated Microbiome. MSystems, 2022, 7, .	1.7	14
69	Gene expression profiling of the pH response inShigella flexneri2a. FEMS Microbiology Letters, 2007, 270, 12-20.	0.7	13
70	An elaborate landscape of the human antibody repertoire against enterovirus 71 infection is revealed by phage display screening and deep sequencing. MAbs, 2017, 9, 342-349.	2.6	13
71	Identification and characterization of a novel rodent bocavirus from different rodent species in China. Emerging Microbes and Infections, 2018, 7, 1-11.	3.0	13
72	Proteogenomic Analysis and Discovery of Immune Antigens in Mycobacterium vaccae. Molecular and Cellular Proteomics, 2017, 16, 1578-1590.	2.5	12

#	Article	IF	CITATIONS
73	Complete genome sequence of Shewanella benthica DB21MT-2, an obligate piezophilic bacterium isolated from the deepest Mariana Trench sediment. Marine Genomics, 2019, 44, 52-56.	0.4	12
74	Learning transferable deep convolutional neural networks for the classification of bacterial virulence factors. Bioinformatics, 2020, 36, 3693-3702.	1.8	11
75	An Integrated Approach for Finding Overlooked Genes in Shigella. PLoS ONE, 2011, 6, e18509.	1.1	10
76	Complete Genome Sequence of Neisseria meningitidis Serogroup A Strain NMA510612, Isolated from a Patient with Bacterial Meningitis in China. Genome Announcements, 2014, 2, .	0.8	10
77	The outer membrane phospholipase A is essential for membrane integrity and type III secretion in <i>Shigella flexneri</i> . Open Biology, 2016, 6, 160073.	1.5	10
78	N-Glycans and sulfated glycosaminoglycans contribute to the action of diverse Tc toxins on mammalian cells. PLoS Pathogens, 2021, 17, e1009244.	2.1	10
79	Subproteomic tools to increase genome annotation complexity. Proteomics, 2008, 8, 4209-4213.	1.3	9
80	Genome Sequences of Avian Pathogenic Escherichia coli Strains Isolated from Brazilian Commercial Poultry. Genome Announcements, 2013, 1, e0011013.	0.8	9
81	Analysis of part of the Trichophyton rubrum ESTs. Science in China Series C: Life Sciences, 2004, 47, 389.	1.3	9
82	CloudLCA: finding the lowest common ancestor in metagenome analysis using cloud computing. Protein and Cell, 2012, 3, 148-152.	4.8	8
83	Mutations of Novel Influenza A(H10N8) Virus in Chicken Eggs and MDCK Cells. Emerging Infectious Diseases, 2014, 20, 1541-1543.	2.0	8
84	Biodiversity of rodent anelloviruses in China. Emerging Microbes and Infections, 2018, 7, 1-3.	3.0	8
85	Transcriptional profile of the <i>Shigella flexneri</i> response to an alkaloid: berberine. FEMS Microbiology Letters, 2010, 303, 169-175.	0.7	7
86	Proteogenomic Analysis of <i>Trichophyton rubrum</i> Aided by RNA Sequencing. Journal of Proteome Research, 2015, 14, 2207-2218.	1.8	7
87	Genomic research for important pathogenic bacteria in China. Science in China Series C: Life Sciences, 2009, 52, 50-63.	1.3	6
88	Research progress in Shigella in the postgenomic era. Science China Life Sciences, 2010, 53, 1284-1290.	2.3	6
89	Identification and characterisation of non-coding small RNAs in the pathogenic filamentous fungus Trichophyton rubrum. BMC Genomics, 2013, 14, 931.	1.2	6
90	Comparison between gene expression of conidia and germinating phase in Trichophyton rubrum. Science in China Series C: Life Sciences, 2007, 50, 377-384.	1.3	5

#	Article	IF	CITATIONS
91	Evaluating the Value of Defensins for Diagnosing Secondary Bacterial Infections in Influenza-Infected Patients. Frontiers in Microbiology, 2018, 9, 2762.	1.5	5
92	Global transcriptional profiles of Trichophyton rubrum in response to Flucytosine. Science in China Series C: Life Sciences, 2009, 52, 1173-1185.	1.3	4
93	Comparative genomic analysis of obligately piezophilic Moritella yayanosii DB21MT-5 reveals bacterial adaptation to the Challenger Deep, Mariana Trench. Microbial Genomics, 2021, 7, .	1.0	4
94	<i>Shigella</i> Genomes: a Tale of Convergent Evolution and Specialization through IS Expansion and Genome Reduction. , 0, , 23-39.		4
95	Comparative analysis of whole genome structure of Streptococcus suis using whole genome PCR scanning. Science in China Series C: Life Sciences, 2008, 51, 21-26.	1.3	2
96	Identification of novel drug targets in bovine respiratory disease: an essential step in applying biotechnologic techniques to develop more effective therapeutic treatments. Drug Design, Development and Therapy, 2018, Volume 12, 1135-1146.	2.0	2
97	Metagenomics: A New Approach for Microbial Identification. Air & Water Borne Diseases, 2012, 01, .	0.3	0