
Wei Xiong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6619045/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A self-template synthesis of hierarchical porous carbon foams based on banana peel for supercapacitor electrodes. Journal of Power Sources, 2012, 209, 152-157.	7.8	425
2	Development of MnO ₂ /porous carbon microspheres with a partially graphitic structure for high performance supercapacitor electrodes. Journal of Materials Chemistry A, 2014, 2, 2555-2562.	10.3	292
3	Ultrahigh energy density of aÂN, O codoped carbon nanosphere based all-solid-state symmetric supercapacitor. Journal of Materials Chemistry A, 2019, 7, 1177-1186.	10.3	188
4	Nickel-Doped Activated Mesoporous Carbon Microspheres with Partially Graphitic Structure for Supercapacitors. Energy & amp; Fuels, 2013, 27, 1168-1173.	5.1	165
5	Cooking carbon with protic salt: Nitrogen and sulfur self-doped porous carbon nanosheets for supercapacitors. Chemical Engineering Journal, 2018, 347, 233-242.	12.7	160
6	A novel synthesis of mesoporous carbon microspheres for supercapacitor electrodes. Journal of Power Sources, 2011, 196, 10461-10464.	7.8	153
7	Template-Free, Self-Doped Approach to Porous Carbon Spheres with High N/O Contents for High-Performance Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 7024-7034.	6.7	147
8	Synergistic design of aÂN, O co-doped honeycomb carbon electrode and an ionogel electrolyte enabling all-solid-state supercapacitors with an ultrahigh energy density. Journal of Materials Chemistry A, 2019, 7, 816-826.	10.3	134
9	Ternary-doped carbon electrodes for advanced aqueous solid-state supercapacitors based on a "water-in-salt―gel electrolyte. Journal of Materials Chemistry A, 2019, 7, 15801-15811.	10.3	130
10	Carbon hydrangeas with typical ionic liquid matched pores for advanced supercapacitors. Carbon, 2020, 168, 499-507.	10.3	110
11	N, S Co-doped hierarchical porous carbon rods derived from protic salt: Facile synthesis for high energy density supercapacitors. Electrochimica Acta, 2018, 274, 378-388.	5.2	105
12	High-energy flexible solid-state supercapacitors based on O, N, S-tridoped carbon electrodes and a 3.5â€V gel-type electrolyte. Chemical Engineering Journal, 2019, 372, 1216-1225.	12.7	103
13	Deep-eutectic-solvent synthesis of N/O self-doped hollow carbon nanorods for efficient energy storage. Chemical Communications, 2019, 55, 11219-11222.	4.1	101
14	Development of gold-doped carbon foams as a sensitive electrochemical sensor for simultaneous determination of Pb (II) and Cu (II). Chemical Engineering Journal, 2016, 284, 650-656.	12.7	93
15	Core-shell hierarchical porous carbon spheres with N/O doping for efficient energy storage. Electrochimica Acta, 2020, 358, 136899.	5.2	90
16	Improving the pore-ion size compatibility between poly(ionic liquid)-derived carbons and high-voltage electrolytes for high energy-power supercapacitors. Chemical Engineering Journal, 2020, 382, 122945.	12.7	81
17	A universal strategy to obtain highly redox-active porous carbons for efficient energy storage. Journal of Materials Chemistry A, 2020, 8, 3717-3725.	10.3	79
18	Highly active N, O-doped hierarchical porous carbons for high-energy supercapacitors. Chinese Chemical Letters, 2020, 31, 1226-1230.	9.0	78

Wei Xiong

#	Article	IF	CITATIONS
19	Hydrangea-like N/O codoped porous carbons for high-energy supercapacitors. Chemical Engineering Journal, 2020, 388, 124208.	12.7	75
20	Aqueous Manganese Dioxide Ink for Paperâ€Based Capacitive Energy Storage Devices. Angewandte Chemie - International Edition, 2015, 54, 6800-6803.	13.8	69
21	Schiff-Base/Resin Copolymer under Hypersaline Condition to High-Level N-Doped Porous Carbon Nanosheets for Supercapacitors. ACS Applied Nano Materials, 2018, 1, 4998-5007.	5.0	63
22	From interpenetrating polymer networks to hierarchical porous carbons for advanced supercapacitor electrodes. Chinese Chemical Letters, 2019, 30, 1445-1449.	9.0	58
23	Preparation of nitrogen-doped macro-/mesoporous carbon foams as electrode material for supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 411, 34-39.	4.7	51
24	Preparation of a gold electrode modified with Au–TiO2 nanoparticles as an electrochemical sensor for the detection of mercury(II) ions. Journal of Materials Science, 2015, 50, 769-776.	3.7	46
25	Water-in-salt electrolyte ion-matched N/O codoped porous carbons for high-performance supercapacitors. Chinese Chemical Letters, 2020, 31, 579-582.	9.0	39
26	Magnetically separated and N, S co-doped mesoporous carbon microspheres for the removal of mercury ions. Chinese Chemical Letters, 2016, 27, 795-800.	9.0	31
27	Controlled Synthesis of Carbon Nanospheres via the Modulation of the Hydrophilic Length of the Assembled Surfactant Micelles. Langmuir, 2018, 34, 10389-10396.	3.5	31
28	A novel and accurate analytical method based on X-ray photoelectron spectroscopy for the quantitative detection of the lithium content in LiFePO ₄ . Analytical Methods, 2014, 6, 5708.	2.7	29
29	Zinc tartrate oriented hydrothermal synthesis of microporous carbons for high performance supercapacitor electrodes. Chinese Chemical Letters, 2016, 27, 399-404.	9.0	26
30	Catalyst-free synthesis of phenolic-resin-based carbon nanospheres for simultaneous electrochemical detection of Cu (II) and Hg (II). Diamond and Related Materials, 2021, 111, 108170.	3.9	26
31	Large surface area porous carbon materials synthesized by direct carbonization of banana peel and citrate salts for use as high-performance supercapacitors. Journal of Materials Science: Materials in Electronics, 2018, 29, 4294-4300.	2.2	24
32	Emulsion-template synthesis of mesoporous nickel oxide nanoflowers composed of crossed nanosheets for effective nitrogen reduction. Dalton Transactions, 2021, 50, 5835-5844.	3.3	24
33	MgH ₂ /single-atom heterojunctions: effective hydrogen storage materials with facile dehydrogenation. Journal of Materials Chemistry A, 2022, 10, 19839-19851.	10.3	23
34	Partially graphitic micro- and mesoporous carbon microspheres for supercapacitors. Chinese Chemical Letters, 2013, 24, 1037-1040.	9.0	18
35	Electrocatalytic ammonia synthesis catalyzed by mesoporous nickel oxide nanosheets loaded with Pt nanoparticles. Chinese Journal of Catalysis, 2022, 43, 1371-1378.	14.0	18
36	Conductometric sensor for ammonia and ethanol using gold nanoparticle-doped mesoporous TiO2. Mikrochimica Acta, 2015, 182, 2345-2352.	5.0	15

Wei Xiong

#	Article	IF	CITATIONS
37	The highly sensitive electrocatalytic sensing of catechol using a gold/titanium dioxide nanocomposite-modified gold electrode. RSC Advances, 2014, 4, 32092.	3.6	13
38	Direct In Situ Vertical Growth of Interlaced Mesoporous NiO Nanosheets on Carbon Felt for Electrocatalytic Ammonia Synthesis. Chemistry - A European Journal, 2022, 28, .	3.3	13
39	Self-assembly of ultra-small gold nanoparticles on an indium tin oxide electrode for the enzyme-free detection of hydrogen peroxide. Mikrochimica Acta, 2014, 181, 983-989.	5.0	12
40	Effect of nickel oxide morphology on the nitrogen electrochemical reduction reaction. Nano Materials Science, 2020, 2, 353-359.	8.8	12
41	Facile Synthesis of Nitrogenâ€Doped Porous Carbonâ€Gold Hybrid Nanocomposite for Mercury(II) Ion Electrochemical Determination. Electroanalysis, 2016, 28, 133-139.	2.9	11
42	Efficient and Facile Fabrication of Hierarchical Carbon Foams with Abundant Nanoscale Pores for Use in Supercapacitors. Bulletin of the Korean Chemical Society, 2017, 38, 350-355.	1.9	8
43	Size-controlled growth of gold nanoparticle-doped carbon foams as sensitive electrochemical sensors for the determination of Pb(II). Ionics, 2016, 22, 935-941.	2.4	5
44	Facile Surfactant-Assisted Synthesis of Uniform NiO Nanospheres on Carbon Felt for Efficient Electrocatalytic Nitrogen Reduction. Energy & Fuels, 2022, 36, 7017-7024.	5.1	5
45	Synthesis and Electrochemical Properties of Macro-/Microporous Carbon Foams. Advanced Materials Research, 2011, 239-242, 1396-1399.	0.3	3
46	Controllable synthesis of phenolic resin-based carbon nanospheres for simultaneous detection of heavy-metal ions. Journal of Materials Science: Materials in Electronics, 2022, 33, 1542-1554.	2.2	2
47	Effect of the mercaptan alkyl chain structure on the structure and electrochemical properties of Au-doped mesoporous carbon materials. Journal of Materials Science: Materials in Electronics, 2019, 30, 14281-14290.	2.2	1