jerome Devaux

List of Publications by Citations

Source: https://exaly.com/author-pdf/661901/jerome-devaux-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

54 2,589 27 50 g-index

59 3,169 6.4 5.13 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
54	KCNQ2 is a nodal K+ channel. <i>Journal of Neuroscience</i> , 2004 , 24, 1236-44	6.6	338
53	Selective blocking of voltage-gated K+ channels improves experimental autoimmune encephalomyelitis and inhibits T cell activation. <i>Journal of Immunology</i> , 2001 , 166, 936-44	5.3	164
52	Neurofascin-155 IgG4 in chronic inflammatory demyelinating polyneuropathy. <i>Neurology</i> , 2016 , 86, 800	-7 .5	159
51	Nodal proteins are target antigens in Guillain-Barrsyndrome. <i>Journal of the Peripheral Nervous System</i> , 2012 , 17, 62-71	4.7	131
50	Contactin 1 IgG4 associates to chronic inflammatory demyelinating polyneuropathy with sensory ataxia. <i>Brain</i> , 2015 , 138, 1484-91	11.2	123
49	Autoantibodies to nodal isoforms of neurofascin in chronic inflammatory demyelinating polyneuropathy. <i>Brain</i> , 2017 , 140, 1851-1858	11.2	120
48	Autoantibodies in chronic inflammatory neuropathies: diagnostic and therapeutic implications. <i>Nature Reviews Neurology</i> , 2017 , 13, 533-547	15	118
47	Kv3.1b is a novel component of CNS nodes. <i>Journal of Neuroscience</i> , 2003 , 23, 4509-18	6.6	113
46	Disruption of neurofascin and gliomedin at nodes of Ranvier precedes demyelination in experimental allergic neuritis. <i>Brain</i> , 2009 , 132, 260-73	11.2	97
45	Contactin-1 IgG4 antibodies cause paranode dismantling and conduction defects. <i>Brain</i> , 2016 , 139, 1700	0 -1 1i22	86
44	Tight junctions potentiate the insulative properties of small CNS myelinated axons. <i>Journal of Cell Biology</i> , 2008 , 183, 909-21	7.3	79
43	Altered ion channels in an animal model of Charcot-Marie-Tooth disease type IA. <i>Journal of Neuroscience</i> , 2005 , 25, 1470-80	6.6	67
42	Paranodal lesions in chronic inflammatory demyelinating polyneuropathy associated with anti-Neurofascin 155 antibodies. <i>Neuromuscular Disorders</i> , 2017 , 27, 290-293	2.9	65
41	Antibodies to neurofascin, contactin-1, and contactin-associated protein 1 in CIDP: Clinical relevance of IgG isotype. <i>Neurology: Neuroimmunology and NeuroInflammation</i> , 2020 , 7,	9.1	60
40	Neuro-glial interactions at the nodes of Ranvier: implication in health and diseases. <i>Frontiers in Cellular Neuroscience</i> , 2013 , 7, 196	6.1	49
39	A recurrent KCNQ2 pore mutation causing early onset epileptic encephalopathy has a moderate effect on M current but alters subcellular localization of Kv7 channels. <i>Neurobiology of Disease</i> , 2015 , 80, 80-92	7.5	45
38	Antibodies to gliomedin cause peripheral demyelinating neuropathy and the dismantling of the nodes of Ranvier. <i>American Journal of Pathology</i> , 2012 , 181, 1402-13	5.8	45

(2016-2017)

Anti-NF155 chronic inflammatory demyelinating polyradiculoneuropathy strongly associates to HLA-DRB15. <i>Journal of Neuroinflammation</i> , 2017 , 14, 224	10.1	43
Effects of K+ channel blockers on developing rat myelinated CNS axons: identification of four types of K+ channels. <i>Journal of Neurophysiology</i> , 2002 , 87, 1376-85	3.2	43
Protein 4.1B contributes to the organization of peripheral myelinated axons. <i>PLoS ONE</i> , 2011 , 6, e2504	33.7	42
Anti-Neurofascin-155 IgG4 antibodies prevent paranodal complex formation in vivo. <i>Journal of Clinical Investigation</i> , 2019 , 129, 2222-2236	15.9	41
Antibodies against peripheral nerve antigens in chronic inflammatory demyelinating polyradiculoneuropathy. <i>Scientific Reports</i> , 2017 , 7, 14411	4.9	38
Calmodulin orchestrates the heteromeric assembly and the trafficking of KCNQ2/3 (Kv7.2/3) channels in neurons. <i>Molecular and Cellular Neurosciences</i> , 2014 , 58, 40-52	4.8	34
Mutations in GLDN, Encoding Gliomedin, a Critical Component of the Nodes of Ranvier, Are Responsible for Lethal Arthrogryposis. <i>American Journal of Human Genetics</i> , 2016 , 99, 928-933	11	33
Reducing canonical Wingless/Wnt signaling pathway confers protection against mutant Huntingtin toxicity in Drosophila. <i>Neurobiology of Disease</i> , 2012 , 47, 237-47	7.5	29
Fibronectin type III-like domains of neurofascin-186 protein mediate gliomedin binding and its clustering at the developing nodes of Ranvier. <i>Journal of Biological Chemistry</i> , 2011 , 286, 42426-42434	5.4	28
Neurofascin-155 as a putative antigen in combined central and peripheral demyelination. <i>Neurology: Neuroimmunology and NeuroInflammation</i> , 2016 , 3, e238	9.1	27
A mouse model of Schwartz-Jampel syndrome reveals myelinating Schwann cell dysfunction with persistent axonal depolarization in vitro and distal peripheral nerve hyperexcitability when perlecan is lacking. <i>American Journal of Pathology</i> , 2012 , 180, 2040-55	5.8	27
The C-terminal domain of I V-spectrin is crucial for KCNQ2 aggregation and excitability at nodes of Ranvier. <i>Journal of Physiology</i> , 2010 , 588, 4719-30	3.9	27
Subacute nodopathy with conduction blocks and anti-neurofascin 140/186 antibodies: an ultrastructural study. <i>Brain</i> , 2018 , 141, e56	11.2	27
Peripheral nerve proteins as potential autoantigens in acute and chronic inflammatory demyelinating polyneuropathies. <i>Autoimmunity Reviews</i> , 2014 , 13, 1070-8	13.6	24
Acute painful autoimmune neuropathy: A variant of Guillain-Barr syndrome. <i>Muscle and Nerve</i> , 2018 , 57, 320-324	3.4	23
Contactin-Associated Protein 1 (CNTNAP1) Mutations Induce Characteristic Lesions of the Paranodal Region. <i>Journal of Neuropathology and Experimental Neurology</i> , 2016 , 75, 1155-1159	3.1	23
A model of tight junction function in central nervous system myelinated axons. <i>Neuron Glia Biology</i> , 2008 , 4, 307-17		21
A Kv7.2 mutation associated with early onset epileptic encephalopathy with suppression-burst enhances Kv7/M channel activity. <i>Epilepsia</i> , 2016 , 57, e87-93	6.4	19
	Effects of K+ channel blockers on developing rat myelinated CNS axons: identification of four types of K+ channels. <i>Journal of Neurophysiology</i> , 2002, 87, 1376-85 Protein 4.1B contributes to the organization of peripheral myelinated axons. <i>PLoS ONE</i> , 2011, 6, e2504: Anti-Neurofascin-155 IgC4 antibodies prevent paranodal complex formation in vivo. <i>Journal of Clinical Investigation</i> , 2019, 129, 2222-2236 Antibodies against peripheral nerve antigens in chronic inflammatory demyelinating polyradiculoneuropathy. <i>Scientific Reports</i> , 2017, 7, 14411 Calmodulin orchestrates the heteromeric assembly and the trafficking of KCNQ2/3 (kv7.2/3) channels in neurons. <i>Molecular and Cellular Neurosciences</i> , 2014, 58, 40-52 Mutations in CLDN, Encoding Gliomedin, a Critical Component of the Nodes of Ranvier, Are Responsible for Lethal Arthrogryposis. <i>American Journal of Human Genetics</i> , 2016, 99, 928-933 Reducing canonical Wingless/Whit signaling pathway confers protection against mutant Huntingtin toxicity in Drosophila. <i>Neurobiology of Disease</i> , 2012, 47, 237-47 Fibronectin type III-like domains of neurofascin-186 protein mediate gliomedin binding and its clustering at the developing nodes of Ranvier. <i>Journal of Biological Chemistry</i> , 2011, 286, 42426-42434 Neurofascin-155 as a putative antigen in combined central and peripheral demyelination. <i>Neurology: Neuroimmunology and NeuroInflammation</i> , 2016, 3, e238 A mouse model of Schwartz-Jampel syndrome reveals myelinaing Schwann cell dysfunction with persistent axonal depolarization in vitro and distal peripheral nerve hyperexcitability when perlecan is lacking. <i>American Journal of Pathology</i> , 2012, 180, 2040-55 The C-terminal domain of IV-spectrin is crucial for KCNQ2 aggregation and excitability at nodes of Ranvier. <i>Journal of Physiology</i> , 2016, 588, 4719-30 Subacute nodopathy with conduction blocks and anti-neurofascin 140/186 antibodies: an ultrastructural study. <i>Brain</i> , 2018, 141, e56 Peripheral nerve proteins as potential autoantigens in acute and chron	Effects of K+ channel blockers on developing rat myelinated CNS axons: identification of four types of K+ channels. <i>Journal of Neurophysiology</i> , 2002, 87, 1376-85 Protein 4.1B contributes to the organization of peripheral myelinated axons. <i>PLoS ONE</i> , 2011, 6, e25043,3.7 Anti-Neurofascin-155 IgG4 antibodies prevent paranodal complex formation in vivo. <i>Journal of Chinical Investigation</i> , 2019, 129, 2222-2336 Antibodies against peripheral nerve antigens in chronic inflammatory demyelinating polyradiculoneuropathy. <i>Scientific Reports</i> , 2017, 7, 14411 49 Calmodulin orchestrates the heteromeric assembly and the trafficking of KCNQ2/3 (Kv7.2/3) channels in neurons. <i>Molecular and Cellular Neurosciences</i> , 2014, 58, 40-52 Mutations in GLDN, Encoding Gliomedin, a Critical Component of the Nodes of Ranvier, Are Responsible for Lethal Arthrogryposis. <i>American Journal of Human Genetics</i> , 2016, 99, 928-933 Reducing canonical Wingless/Wnt signaling pathway confers protection against mutant Huntingtin toxicity in Drosophila. <i>Neurobiology of Disease</i> , 2012, 47, 237-47 Fibronectin type Ill-like domains of neurofascin-186 protein mediate gliomedin binding and its clustering at the developing nodes of Ranvier. <i>Journal of Biological Chemistry</i> , 2011, 286, 42426-42434 54 A mouse model of Schwartz-Jampel syndrome reveals myelinating Schwann cell dysfunction with persistent axonal depolarization in vitro and distal peripheral demyelination. Neurofascin-155 as a putative antigen in combined central and peripheral demyelination. Neurofascin-156 as in lacking. <i>American Journal of Pathology</i> , 2012, 180, 2040-55 The C-terminal domain of IV-spectrin is crucial for KCNQ2 aggregation and excitability at nodes of Ranvier. <i>Journal of Physiology</i> , 2010, 588, 4719-30 Subacute nodopathy with conduction blocks and anti-neurofascin 140/186 antibodies: an ultrastructural study. <i>Brain</i> , 2018, 141, e56 11.2 Peripheral nerve proteins as potential autoantigens in acute and chronic inflammatory demyelinating polyneuropathies. <i>Au</i>

19	Electrophysiological features of chronic inflammatory demyelinating polyradiculoneuropathy associated with IgG4 antibodies targeting neurofascin 155 or contactin 1 glycoproteins. <i>Clinical Neurophysiology</i> , 2020 , 131, 921-927	4.3	18
18	"Neuro-renal syndrome" related to anti-contactin-1 antibodies. <i>Muscle and Nerve</i> , 2019 , 59, E19-E21	3.4	17
17	Teaching Neuro: Cranial nerve hypertrophy in IgG4 anti-neurofascin 155 antibody-positive polyneuropathy. <i>Neurology</i> , 2017 , 88, e52	6.5	16
16	Antibodies to the Caspr1/contactin-1 complex in chronic inflammatory demyelinating polyradiculoneuropathy. <i>Brain</i> , 2021 , 144, 1183-1196	11.2	16
15	Behavioral and molecular exploration of the AR-CMT2A mouse model Lmna (R298C/R298C). <i>NeuroMolecular Medicine</i> , 2012 , 14, 40-52	4.6	15
14	Antibody- and macrophage-mediated segmental demyelination in chronic inflammatory demyelinating polyneuropathy: clinical, electrophysiological, immunological and pathological correlates. <i>European Journal of Neurology</i> , 2020 , 27, 692-701	6	15
13	Biallelic mutations in neurofascin cause neurodevelopmental impairment and peripheral demyelination. <i>Brain</i> , 2019 , 142, 2948-2964	11.2	13
12	Chronic inflammatory demyelinating polyneuropathy with anti-NF155 IgG4 in China. <i>Journal of Neuroimmunology</i> , 2019 , 337, 577074	3.5	11
11	Glial M6B stabilizes the axonal membrane at peripheral nodes of Ranvier. <i>Glia</i> , 2018 , 66, 801-812	9	10
10	Claudin Proteins And Neuronal Function. <i>Current Topics in Membranes</i> , 2010 , 65, 229-253	2.2	8
9	Moesin is a possible target molecule for cytomegalovirus-related Guillain-Barrßyndrome. <i>Neurology</i> , 2014 , 83, 2314	6.5	7
8	Myelin basic protein-reactive T cells induce conduction failure in vivo but not in vitro. <i>NeuroReport</i> , 2003 , 14, 317-20	1.7	7
7	Precise Spatiotemporal Control of Nodal Na Channel Clustering by Bone Morphogenetic Protein-1/Tolloid-like Proteinases. <i>Neuron</i> , 2020 , 106, 806-815.e6	13.9	6
6	A possible link between KCNQ2- and STXBP1-related encephalopathies: STXBP1 reduces the inhibitory impact of syntaxin-1A on M current. <i>Epilepsia</i> , 2017 , 58, 2073-2084	6.4	4
5	Contactin-1 is a novel target antigen in membranous nephropathy associated with chronic inflammatory demyelinating polyneuropathy. <i>Kidney International</i> , 2021 , 100, 1240-1249	9.9	4
4	Schwannomin-interacting Protein 1 Isoform IQCJ-SCHIP1 Is a Multipartner Ankyrin- and Spectrin-binding Protein Involved in the Organization of Nodes of Ranvier. <i>Journal of Biological Chemistry</i> , 2017 , 292, 2441-2456	5.4	2
3	Paranodopathie 🏻 anticorps anti-neurofascine 155 : atteinte conjointe du systine nerveux central et pfiphfique. Ipropos dun cas et revue de la littilature. <i>Pratique Neurologique - FMC</i> , 2017 , 8, 156-160	О	2
2	A patient with distal lower extremity neuropathic pain and anti-contactin-associated protein-2 antibodies. <i>Muscle and Nerve</i> , 2021 , 64, E15-E17	3.4	0

Ritumixab efficacy in Treatment-resistant CIDP with tremor in an Antineurofascin155 seropositive pediatric case. *Revue Neurologique*, **2021**, 177, 1310-1312

3