Chaopeng Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6618890/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions. Atmospheric Chemistry and Physics, 2018, 18, 14095-14111.	4.9	1,613
2	Drivers of improved PM _{2.5} air quality in China from 2013 to 2017. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24463-24469.	7.1	1,193
3	Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature, 2015, 524, 335-338.	27.8	1,185
4	MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmospheric Chemistry and Physics, 2017, 17, 935-963.	4.9	1,069
5	Anthropogenic emission inventories in China: a review. National Science Review, 2017, 4, 834-866.	9.5	580
6	Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target. Nature, 2019, 572, 373-377.	27.8	484
7	Persistent growth of anthropogenic non-methane volatile organic compound (NMVOC) emissions in China during 1990–2017: drivers, speciation and ozone formation potential. Atmospheric Chemistry and Physics, 2019, 19, 8897-8913.	4.9	267
8	Global and regional drivers of land-use emissions in 1961–2017. Nature, 2021, 589, 554-561.	27.8	256
9	Impacts of climate change on future air quality and human health in China. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17193-17200.	7.1	219
10	Targeted emission reductions from global super-polluting power plant units. Nature Sustainability, 2018, 1, 59-68.	23.7	215
11	Drivers of PM2.5 air pollution deaths in China 2002–2017. Nature Geoscience, 2021, 14, 645-650.	12.9	197
12	Agricultural risks from changing snowmelt. Nature Climate Change, 2020, 10, 459-465.	18.8	187
13	Current Emissions and Future Mitigation Pathways of Coal-Fired Power Plants in China from 2010 to 2030. Environmental Science & Technology, 2018, 52, 12905-12914.	10.0	122
14	Dynamic projection of anthropogenic emissions in China: methodology and 2015–2050 emission pathways under a range of socio-economic, climate policy, and pollution control scenarios. Atmospheric Chemistry and Physics, 2020, 20, 5729-5757.	4.9	117
15	Flexibility and intensity of global water use. Nature Sustainability, 2019, 2, 515-523.	23.7	106
16	Resolution dependence of uncertainties in gridded emission inventories: a case study in Hebei, China. Atmospheric Chemistry and Physics, 2017, 17, 921-933.	4.9	88
17	Integrating mitigation of air pollutants and greenhouse gases in Chinese cities: development of GAINS-City model for Beijing. Journal of Cleaner Production, 2013, 58, 25-33.	9.3	79
18	Air quality and health benefits of China's emission control policies on coal-fired power plants during 2005–2020. Environmental Research Letters, 2019, 14, 094016.	5.2	73

CHAOPENG HONG

#	Article	IF	CITATIONS
19	To what extent can China's near-term air pollution control policy protect air quality and human health? A case study of the Pearl River Delta region. Environmental Research Letters, 2015, 10, 104006.	5.2	67
20	Variations of China's emission estimates: response to uncertainties in energy statistics. Atmospheric Chemistry and Physics, 2017, 17, 1227-1239.	4.9	65
21	Land-use emissions embodied in international trade. Science, 2022, 376, 597-603.	12.6	61
22	Impacts of ozone and climate change on yields of perennial crops in California. Nature Food, 2020, 1, 166-172.	14.0	59
23	Multi-year downscaling application of two-way coupled WRF v3.4 and CMAQ v5.0.2 over east Asia for regional climate and air quality modeling: model evaluation and aerosol direct effects. Geoscientific Model Development, 2017, 10, 2447-2470.	3.6	55
24	Enhancement of PM _{2.5} Concentrations by Aerosolâ€Meteorology Interactions Over China. Journal of Geophysical Research D: Atmospheres, 2018, 123, 1179-1194.	3.3	51
25	Decadal changes in anthropogenic source contribution of PM _{2.5} pollution and related health impacts in China, 1990–2015. Atmospheric Chemistry and Physics, 2020, 20, 7783-7799.	4.9	49
26	Health co-benefits of climate change mitigation depend on strategic power plant retirements and pollution controls. Nature Climate Change, 2021, 11, 1077-1083.	18.8	49
27	Clobal patterns of daily CO2 emissions reductions in the first year of COVID-19. Nature Geoscience, 2022, 15, 615-620.	12.9	46
28	Energy and emission pathways towards PM2.5 air quality attainment in the Beijing-Tianjin-Hebei region by 2030. Science of the Total Environment, 2019, 692, 361-370.	8.0	45
29	Atmospheric methane removal: a research agenda. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200454.	3.4	44
30	Simulation and evaluation of dust emissions with WRF-Chem (v3.7.1) and its relationship to the changing climate over East Asia from 1980 to 2015. Atmospheric Environment, 2017, 167, 511-522.	4.1	43
31	Emissions rebound from the COVID-19 pandemic. Nature Climate Change, 2022, 12, 412-414.	18.8	41
32	Weakening aerosol direct radiative effects mitigate climate penalty on Chinese air quality. Nature Climate Change, 2020, 10, 845-850.	18.8	32
33	Infrastructure Shapes Differences in the Carbon Intensities of Chinese Cities. Environmental Science & Technology, 2018, 52, 6032-6041.	10.0	30
34	Reduction in black carbon light absorption due to multi-pollutant emission control during APEC China 2014. Atmospheric Chemistry and Physics, 2018, 18, 10275-10287.	4.9	20
35	Modeling the aging process of black carbon during atmospheric transport using a new approach: a case study in Beijing. Atmospheric Chemistry and Physics, 2019, 19, 9663-9680.	4.9	17
36	Comprehensive evaluation of multi-year real-time air quality forecasting using an online-coupled meteorology-chemistry model over southeastern United States. Atmospheric Environment, 2016, 138, 162-182.	4.1	13

CHAOPENG HONG

#	Article	IF	CITATIONS
37	Corrigendum to Anthropogenic emission inventories in China: a review. National Science Review, 2018, 5, 603-603.	9.5	12
38	Reduced-complexity air quality intervention modeling over China: the development of InMAPv1.6.1-China and a comparison with CMAQv5.2. Geoscientific Model Development, 2021, 14, 7621-7638.	3.6	10
39	Impact of Lockdowns and Winter Temperatures on Natural Gas Consumption in Europe. Earth's Future, 2022, 10, .	6.3	10
40	Evaporation process dominates vehicular NMVOC emissions in China with enlarged contribution from 1990 to 2016. Environmental Research Letters, 2021, 16, 124036.	5.2	4