Bruna Panizzutti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6618802/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitochondrial activity and oxidative stress markers in peripheral blood mononuclear cells of patients with bipolar disorder, schizophrenia, and healthy subjects. Journal of Psychiatric Research, 2013, 47, 1396-1402.	3.1	92
2	Maternal Deprivation Induces Depressive-like Behaviour and Alters Neurotrophin Levels in the Rat Brain. Neurochemical Research, 2011, 36, 460-466.	3.3	87
3	Omega-3 prevents behavior response and brain oxidative damage in the ketamine model of schizophrenia. Neuroscience, 2014, 259, 223-231.	2.3	71
4	Effects of omega-3 dietary supplement in prevention of positive, negative and cognitive symptoms: A study in adolescent rats with ketamine-induced model of schizophrenia. Schizophrenia Research, 2012, 141, 162-167.	2.0	65
5	Neurotrophins, inflammation and oxidative stress as illness activity biomarkers in bipolar disorder. Expert Review of Neurotherapeutics, 2013, 13, 827-842.	2.8	57
6	Increased serum levels of eotaxin/CCL11 in late-stage patients with bipolar disorder: An accelerated aging biomarker?. Journal of Affective Disorders, 2015, 182, 64-69.	4.1	47
7	Shortened telomere length in bipolar disorder: a comparison of the early and late stages of disease. Revista Brasileira De Psiquiatria, 2016, 38, 281-286.	1.7	43
8	Telomere length in subjects with schizophrenia, their unaffected siblings and healthy controls: Evidence of accelerated aging. Schizophrenia Research, 2016, 174, 39-42.	2.0	38
9	Telomere Length and CCL11 Levels are Associated With Gray Matter Volume and Episodic Memory Performance in Schizophrenia: Evidence of Pathological Accelerated Aging. Schizophrenia Bulletin, 2018, 44, 158-167.	4.3	35
10	The use of a gene expression signature and connectivity map to repurpose drugs for bipolar disorder. World Journal of Biological Psychiatry, 2020, 21, 775-783.	2.6	27
11	Progesterone and its metabolites as therapeutic targets in psychiatric disorders. Expert Opinion on Therapeutic Targets, 2014, 18, 679-690.	3.4	25
12	Adjunctive <i>N</i> -acetylcysteine in depression: exploration of interleukin-6, C-reactive protein and brain-derived neurotrophic factor. Acta Neuropsychiatrica, 2017, 29, 337-346.	2.1	25
13	Differences in eotaxin serum levels patients with recent onset and in chronic stable schizophrenia: A clue for understanding accelerating aging profile. Schizophrenia Research, 2014, 152, 528-529.	2.0	19
14	Mechanisms Underpinning the Polypharmacy Effects of Medications in Psychiatry. International Journal of Neuropsychopharmacology, 2018, 21, 582-591.	2.1	19
15	Olanzapine plus fluoxetine treatment increases Nt-3 protein levels in the rat prefrontal cortex. Neuroscience Letters, 2011, 497, 99-103.	2.1	16
16	Mediator effects of parameters of inflammation and neurogenesis from a <i>N</i> -acetyl cysteine clinical-trial for bipolar depression. Acta Neuropsychiatrica, 2018, 30, 334-341.	2.1	16
17	Drugs used to treat bipolar disorder act via microRNAs to regulate expression of genes involved in neurite outgrowth. Journal of Psychopharmacology, 2020, 34, 370-379.	4.0	15
18	Transcriptional Modulation of the Hippo Signaling Pathway by Drugs Used to Treat Bipolar Disorder and Schizophrenia. International Journal of Molecular Sciences, 2021, 22, 7164.	4.1	11

Bruna Panizzutti

#	Article	IF	CITATIONS
19	Biological Mechanism(s) Underpinning the Association between Antipsychotic Drugs and Weight Gain. Journal of Clinical Medicine, 2021, 10, 4095.	2.4	8
20	Effects of Psychotropic Drugs on Ribosomal Genes and Protein Synthesis. International Journal of Molecular Sciences, 2022, 23, 7180.	4.1	8
21	Repurposing Drugs via Network Analysis: Opportunities for Psychiatric Disorders. Pharmaceutics, 2022, 14, 1464.	4.5	8
22	Transcriptional Effects of Psychoactive Drugs on Genes Involved in Neurogenesis. International Journal of Molecular Sciences, 2020, 21, 8333.	4.1	7
23	Co-Expression Networks Unveiled Long Non-Coding RNAs as Molecular Targets of Drugs Used to Treat Bipolar Disorder. Frontiers in Pharmacology, 2022, 13, 873271.	3.5	7
24	Cannabinoid receptor gene polymorphisms and cognitive performance in patients with schizophrenia and controls. Revista Brasileira De Psiquiatria, 2021, , .	1.7	6
25	Drugs used in the treatment of bipolar disorder and their effects on cholesterol biosynthesis – A possible therapeutic mechanism. World Journal of Biological Psychiatry, 2019, 20, 766-777.	2.6	5
26	Reduction of hippocampal IL-6 levels in LPS-injected rats following acute exendin-4 treatment. Naunyn-Schmiedeberg's Archives of Pharmacology, 2020, 393, 1303-1311.	3.0	3
27	Common effects of bipolar disorder medications on expression quantitative trait loci genes. Journal of Psychiatric Research, 2022, 150, 105-112.	3.1	2
28	Integrative Analyses of Transcriptomes to Explore Common Molecular Effects of Antipsychotic Drugs. International Journal of Molecular Sciences, 2022, 23, 7508.	4.1	2
29	Analyzing leukocyte telomere length in bipolar disorder: Authors' reply. Revista Brasileira De Psiquiatria, 2017, 39, 275-276.	1.7	1