Zhongchang Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/661868/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>OsPHR2</i> Is Involved in Phosphate-Starvation Signaling and Excessive Phosphate Accumulation in Shoots of Plants Â. Plant Physiology, 2008, 146, 1673-1686.	4.8	543
2	Rice SPX1 and SPX2 inhibit phosphate starvation responses through interacting with PHR2 in a phosphate-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14953-14958.	7.1	335
3	Investigating the Contribution of the Phosphate Transport Pathway to Arsenic Accumulation in Rice Â. Plant Physiology, 2011, 157, 498-508.	4.8	299
4	SPX4 Negatively Regulates Phosphate Signaling and Homeostasis through Its Interaction with PHR2 in Rice Â. Plant Cell, 2014, 26, 1586-1597.	6.6	256
5	OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice. New Phytologist, 2017, 215, 1090-1101.	7.3	156
6	Integrative Comparison of the Role of the PHOSPHATE RESPONSE1 Subfamily in Phosphate Signaling and Homeostasis in Rice. Plant Physiology, 2015, 168, 1762-1776.	4.8	152
7	OsPHF1 Regulates the Plasma Membrane Localization of Low- and High-Affinity Inorganic Phosphate Transporters and Determines Inorganic Phosphate Uptake and Translocation in Rice À Â. Plant Physiology, 2011, 157, 269-278.	4.8	144
8	Phosphate transporters <scp><scp>OsPHT1</scp></scp> ;9 and <scp><scp>OsPHT1</scp></scp> ;10 are involved in phosphate uptake in rice. Plant, Cell and Environment, 2014, 37, 1159-1170.	5.7	135
9	The Rice CK2 Kinase Regulates Trafficking of Phosphate Transporters in Response to Phosphate Levels. Plant Cell, 2015, 27, 711-723.	6.6	120
10	Regulation of OsSPX1 and OsSPX3 on Expression of <i>OsSPX</i> domain Genes and Piâ€starvation Signaling in Rice. Journal of Integrative Plant Biology, 2009, 51, 663-674.	8.5	119
11	OsCYT-INV1 for alkaline/neutral invertase is involved in root cell development and reproductivity in rice (Oryza sativa L.). Planta, 2008, 228, 51-59.	3.2	96
12	AtCYT-INV1, a neutral invertase, is involved in osmotic stress-induced inhibition on lateral root growth in Arabidopsis. Plant Molecular Biology, 2007, 64, 575-587.	3.9	93
13	The paralogous SPX3 and SPX5 genes redundantly modulate Pi homeostasis in rice. Journal of Experimental Botany, 2014, 65, 859-870.	4.8	88
14	LARGE ROOT ANGLE1, encoding OsPIN2, is involved in root system architecture in rice. Journal of Experimental Botany, 2018, 69, 385-397.	4.8	70
15	Genetic manipulation of a high-affinity PHR1 target cis-element to improve phosphorous uptake in Oryza sativa L Plant Molecular Biology, 2015, 87, 429-440.	3.9	53
16	PROTEIN PHOSPHATASE95 Regulates Phosphate Homeostasis by Affecting Phosphate Transporter Trafficking in Rice. Plant Cell, 2020, 32, 740-757.	6.6	47
17	Identification of a novel mitochondrial protein, short postembryonic roots 1 (SPR1), involved in root development and iron homeostasis in <i>Oryza sativa</i> . New Phytologist, 2011, 189, 843-855.	7.3	36
18	Assessing the contributions of lateral roots to element uptake in rice using an auxin-related lateral root mutant. Plant and Soil, 2013, 372, 125-136.	3.7	26

#	Article	IF	CITATIONS
19	LIGHT-INDUCED RICE1 Regulates Light-Dependent Attachment of LEAF-TYPE FERREDOXIN-NADP ⁺ OXIDOREDUCTASE to the Thylakoid Membrane in Rice and Arabidopsis. Plant Cell, 2016, 28, 712-728.	6.6	23
20	AtCYT-INV1 in Arabidopsis Sugar Signaling. Plant Signaling and Behavior, 2007, 2, 496-497.	2.4	2