Chao Zhu

List of Publications by Citations

Source: https://exaly.com/author-pdf/661863/chao-zhu-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

2,662 69 27 51 h-index g-index papers citations 82 3,880 16.4 5.16 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
69	Defect-Rich Bi O Cl Nanotubes Self-Accelerating Charge Separation for Boosting Photocatalytic CO Reduction. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 14847-14851	16.4	219
68	High-quality monolayer superconductor NbSe grown by chemical vapour deposition. <i>Nature Communications</i> , 2017 , 8, 394	17.4	199
67	Synergistic Gating of Electro-Iono-Photoactive 2D Chalcogenide Neuristors: Coexistence of Hebbian and Homeostatic Synaptic Metaplasticity. <i>Advanced Materials</i> , 2018 , 30, e1800220	24	188
66	High Mobility 2D Palladium Diselenide Field-Effect Transistors with Tunable Ambipolar Characteristics. <i>Advanced Materials</i> , 2017 , 29, 1602969	24	180
65	Isolated single atom cobalt in BiOBr atomic layers to trigger efficient CO photoreduction. <i>Nature Communications</i> , 2019 , 10, 2840	17.4	177
64	Large-Area and High-Quality 2D Transition Metal Telluride. Advanced Materials, 2017, 29, 1603471	24	140
63	Ultrasensitive 2D Bi O Se Phototransistors on Silicon Substrates. <i>Advanced Materials</i> , 2019 , 31, e18049	45 .4	119
62	In-situ liquid cell transmission electron microscopy investigation on oriented attachment of gold nanoparticles. <i>Nature Communications</i> , 2018 , 9, 421	17.4	117
61	Self-gating in semiconductor electrocatalysis. <i>Nature Materials</i> , 2019 , 18, 1098-1104	27	84
60	Bismuth Vacancy-Tuned Bismuth Oxybromide Ultrathin Nanosheets toward Photocatalytic CO Reduction. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 11, 30786-30792	9.5	79
59	Interpenetrating interfaces for efficient perovskite solar cells with high operational stability and mechanical robustness. <i>Nature Communications</i> , 2021 , 12, 973	17.4	75
58	Van der Waals negative capacitance transistors. <i>Nature Communications</i> , 2019 , 10, 3037	17.4	71
57	Embedding Ultrafine Metal Oxide Nanoparticles in Monolayered Metal-Organic Framework Nanosheets Enables Efficient Electrocatalytic Oxygen Evolution. <i>ACS Nano</i> , 2020 , 14, 1971-1981	16.7	57
56	2D Material Based Synaptic Devices for Neuromorphic Computing. <i>Advanced Functional Materials</i> , 2021 , 31, 2005443	15.6	56
55	One-Step Synthesis of Metal/Semiconductor Heterostructure NbS2/MoS2. <i>Chemistry of Materials</i> , 2018 , 30, 4001-4007	9.6	54
54	Band Structure Engineering of Interfacial Semiconductors Based on Atomically Thin Lead Iodide Crystals. <i>Advanced Materials</i> , 2019 , 31, e1806562	24	49
53	2D Black Phosphorus/SrTiO3 -Based Programmable Photoconductive Switch. <i>Advanced Materials</i> , 2016 , 28, 7768-73	24	44

(2020-2021)

52	Atomically Dispersed Co -N and Fe-N Costructures Boost Oxygen Reduction Reaction in Both Alkaline and Acidic Media. <i>Advanced Materials</i> , 2021 , e2104718	24	41
51	Dual-Metal Interbonding as the Chemical Facilitator for Single-Atom Dispersions. <i>Advanced Materials</i> , 2020 , 32, e2003484	24	40
50	Strain-Engineering of Bi12O17Br2 Nanotubes for Boosting Photocatalytic CO2 Reduction 2020 , 2, 1025	5-1032	38
49	Electric Field Effect in Two-Dimensional Transition Metal Dichalcogenides. <i>Advanced Functional Materials</i> , 2017 , 27, 1602404	15.6	36
48	Synthesis of Co-Doped MoS Monolayers with Enhanced Valley Splitting. <i>Advanced Materials</i> , 2020 , 32, e1906536	24	35
47	Defect-Rich Bi12O17Cl2 Nanotubes Self-Accelerating Charge Separation for Boosting Photocatalytic CO2 Reduction. <i>Angewandte Chemie</i> , 2018 , 130, 15063-15067	3.6	34
46	Light-Tunable 1T-TaS Charge-Density-Wave Oscillators. ACS Nano, 2018, 12, 11203-11210	16.7	32
45	Understanding the Synergistic Effects of Cobalt Single Atoms and Small Nanoparticles: Enhancing Oxygen Reduction Reaction Catalytic Activity and Stability for Zinc-Air Batteries. <i>Advanced Functional Materials</i> , 2021 , 31, 2104735	15.6	32
44	Van der Waals engineering of ferroelectric heterostructures for long-retention memory. <i>Nature Communications</i> , 2021 , 12, 1109	17.4	29
43	Triple-Mode Emissions with Invisible Near-Infrared After-Glow from Cr -Doped Zinc Aluminum Germanium Nanoparticles for Advanced Anti-Counterfeiting Applications. <i>Small</i> , 2020 , 16, e2003121	11	28
42	Optoelectronic properties of atomically thin ReSSe with weak interlayer coupling. <i>Nanoscale</i> , 2016 , 8, 5826-34	7.7	27
41	Penta-PdPSe: A New 2D Pentagonal Material with Highly In-Plane Optical, Electronic, and Optoelectronic Anisotropy. <i>Advanced Materials</i> , 2021 , 33, e2102541	24	27
40	Electrically driven cation exchange for in situ fabrication of individual nanostructures. <i>Nature Communications</i> , 2017 , 8, 14889	17.4	25
39	Ternary Ta PdS Atomic Layers for an Ultrahigh Broadband Photoresponsive Phototransistor. <i>Advanced Materials</i> , 2021 , 33, e2005607	24	25
38	Biomass-Derived Multilayer-Graphene-Encapsulated Cobalt Nanoparticles as Efficient Electrocatalyst for Versatile Renewable Energy Applications. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 1137-1145	8.3	23
37	Optogenetics inspired transition metal dichalcogenide neuristors for in-memory deep recurrent neural networks. <i>Nature Communications</i> , 2020 , 11, 3211	17.4	20
36	A Novel Single-Atom Electrocatalyst Ti /rGO for Efficient Cathodic Reduction in Hybrid Photovoltaics. <i>Advanced Materials</i> , 2020 , 32, e2000478	24	20
35	Recent Advances in Two-Dimensional Magnets: Physics and Devices towards Spintronic Applications. <i>Research</i> , 2020 , 2020, 1768918	7.8	17

34	Room-temperature electrically driven phase transition of two-dimensional 1T-TaS layers. <i>Nanoscale</i> , 2017 , 9, 2436-2441	7.7	16
33	Strain-driven growth of ultra-long two-dimensional nano-channels. <i>Nature Communications</i> , 2020 , 11, 772	17.4	16
32	Ti1graphene single-atom material for improved energy level alignment in perovskite solar cells. <i>Nature Energy</i> , 2021 , 6, 1154-1163	62.3	14
31	Amorphizing noble metal chalcogenide catalysts at the single-layer limit towards hydrogen production. <i>Nature Catalysis</i> , 2022 , 5, 212-221	36.5	14
30	Engineering the Phases and Heterostructures of Ultrathin Hybrid Perovskite Nanosheets. <i>Advanced Materials</i> , 2020 , 32, e2002392	24	13
29	Controlled Growth of 3R Phase Tantalum Diselenide and Its Enhanced Superconductivity. <i>Journal of the American Chemical Society</i> , 2020 , 142, 2948-2955	16.4	12
28	Surface Local Polarization Induced by Bismuth-Oxygen Vacancy Pairs Tuning Non-Covalent Interaction for CO2 Photoreduction. <i>Advanced Energy Materials</i> ,2102389	21.8	11
27	Composition and phase engineering of metal chalcogenides and phosphorous chalcogenides. Nature Materials,	27	11
26	Integration of Morphology and Electronic Structure Modulation on Atomic Iron-Nitrogen-Carbon Catalysts for Highly Efficient Oxygen Reduction. <i>Advanced Functional Materials</i> ,2108345	15.6	10
25	Phase engineering of Cr5Te8 with colossal anomalous Hall effect. <i>Nature Electronics</i> , 2022 , 5, 224-232	28.4	10
24	Salt melt synthesis of Chlorella-derived nitrogen-doped porous carbon with atomically dispersed CoN sites for efficient oxygen reduction reaction. <i>Journal of Colloid and Interface Science</i> , 2021 , 586, 498-504	9.3	9
23	Synthesis of Atomically Thin 1T-TaSe2 with a Strongly Enhanced Charge-Density-Wave Order. <i>Advanced Functional Materials</i> , 2020 , 30, 2001903	15.6	8
22	PdPSe: Component-Fusion-Based Topology Designer of Two-Dimensional Semiconductor. <i>Advanced Functional Materials</i> , 2021 , 31, 2102943	15.6	8
21	Mimicking Neuroplasticity via Ion Migration in van der Waals Layered Copper Indium Thiophosphate. <i>Advanced Materials</i> , 2021 , e2104676	24	7
20	Direct Laser Patterning of a 2D WSe2 Logic Circuit. Advanced Functional Materials, 2021, 31, 2009549	15.6	6
19	Atomic Evolution of Metal©rganic Frameworks into CoN3 Coupling Vacancies by Cooperative Cascade Protection Strategy for Promoting Triiodide Reduction. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 6147-6156	3.8	5
18	2D Cairo Pentagonal PdPS: Air-Stable Anisotropic Ternary Semiconductor with High Optoelectronic Performance. <i>Advanced Functional Materials</i> ,2113255	15.6	5
17	CNT-based bifacial perovskite solar cells toward highly efficient 4-terminal tandem photovoltaics. Energy and Environmental Science,	35.4	4

LIST OF PUBLICATIONS

16	Robust nature of the chiral spin helix in CrNb3S6 nanostructures studied by off-axis electron holography. <i>Physical Review B</i> , 2020 , 102,	3.3	4
15	MoTe: Semiconductor or Semimetal?. ACS Nano, 2021,	16.7	4
14	Tuned single atom coordination structures mediated by polarization force and sulfur anions for photovoltaics. <i>Nano Research</i> , 2021 , 14, 4025	10	3
13	Single-atom-catalyst with abundant Co-S sites for use as a counter electrode in photovoltaics. <i>Chemical Communications</i> , 2021 , 57, 5302-5305	5.8	3
12	Controlled oxidative etching of gold nanorods revealed through in-situ liquid cell electron microscopy. <i>Science China Materials</i> , 2020 , 63, 2599-2605	7.1	2
11	Insight into the Activity and Stability of Transition-Metal Atoms Embedded in MnO for Triiodide Reduction Reaction. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 19303-19310	8.3	2
10	Direct transformation of raw biomass into a Fellx (I single-atom catalyst for efficient oxygen reduction reaction. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 3093-3098	7.8	2
9	Mid-infrared light-emitting properties and devices based on thin-film black phosphorus. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 4418-4424	7.1	2
8	Polymorphism of Segmented Grain Boundaries in Two-Dimensional Transition Metal Dichalcogenides. <i>Nano Letters</i> , 2021 , 21, 6014-6021	11.5	2
7	Strong Piezoelectricity in 3R-MoS 2 Flakes. Advanced Electronic Materials, 2101131	6.4	1
6	Direct growth of single-metal-atom chains 2022 , 1, 245-253		1
5	Defect-mediated ripening of core-shell nanostructures <i>Nature Communications</i> , 2022 , 13, 2211	17.4	1
4	Band Engineering: Band Structure Engineering of Interfacial Semiconductors Based on Atomically Thin Lead Iodide Crystals (Adv. Mater. 17/2019). <i>Advanced Materials</i> , 2019 , 31, 1970121	24	
3	Thickness dependent properties of ultrathin perovskite nanosheets with Ruddlesden-Popper-like atomic stackings. <i>Nanoscale</i> , 2021 , 13, 18961-18966	7.7	
2	Synaptic Devices: 2D Material Based Synaptic Devices for Neuromorphic Computing (Adv. Funct. Mater. 4/2021). <i>Advanced Functional Materials</i> , 2021 , 31, 2170022	15.6	
1	In-situ TEM Study on Sub-10 nm Materials. <i>Microscopy and Microanalysis</i> , 2018 , 24, 1650-1651	0.5	