Miguel L Bote-Lorenzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6618498/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Casual Learn: AÂlinked data-based mobile application for learning about local Cultural Heritage. Semantic Web, 2022, 14, 181-195.	1.9	5
2	Towards a Teacher Application to Support Semantic Annotations of Learning Tasks in Cultural Heritage. , 2022, , .		0
3	Demonstration of SCARLETT: A Smart Learning Environment to Support Learners Across Formal and Informal Contexts. Lecture Notes in Computer Science, 2021, , 404-408.	1.3	1
4	Orchestrating an Ubiquitous Learning Situation About Cultural Heritage withÂCasual Learn. Lecture Notes in Computer Science, 2021, , 332-336.	1.3	1
5	From Informal to Formal: Connecting Learning Experiences in Smart Learning Environments. , 2021, , .		1
6	SLEek: An Ontology For Smart Learning in the Web of Data. , 2021, , .		2
7	Supporting contextualized learning with linked open data. Web Semantics, 2021, 70, 100657.	2.9	5
8	Connecting formal and informal learning in Smart Learning Environments. , 2021, , .		2
9	Magnetic Resonance Simulation in Education: Quantitative Evaluation of an Actual Classroom Experience. Sensors, 2021, 21, 6011.	3.8	1
10	Educawood: A Socio-semantic Annotation System for Environmental Education. Lecture Notes in Computer Science, 2021, , 368-372.	1.3	1
11	Affordances and Core Functions of Smart Learning Environments: A Systematic Literature Review. IEEE Transactions on Learning Technologies, 2021, 14, 129-145.	3.2	30
12	Generating actionable predictions regarding MOOC learners' engagement in peer reviews. Behaviour and Information Technology, 2020, 39, 1356-1373.	4.0	5
13	A Web-Based Educational Magnetic Resonance Simulator: Design, Implementation and Testing. Journal of Medical Systems, 2020, 44, 9.	3.6	11
14	Estimation of Web Proxy Response Times in Community Networks Using Matrix Factorization Algorithms. Electronics (Switzerland), 2020, 9, 88.	3.1	1
15	Integration of an intelligent tutoring system in a magnetic resonance simulator for education: Technical feasibility and user experience. Computer Methods and Programs in Biomedicine, 2020, 195, 105634.	4.7	4
16	CasualLearn: A Smart Application to Learn History of Art. Lecture Notes in Computer Science, 2020, , 472-476.	1.3	5
17	Understanding student behavior and perceptions toward earning badges in a gamified MOOC. Universal Access in the Information Society, 2019, 18, 533-549.	3.0	21
18	To reward and beyond: Analyzing the effect of reward-based strategies in a MOOC. Computers and Education, 2019, 142, 103639.	8.3	42

MIGUEL L BOTE-LORENZO

#	Article	IF	CITATIONS
19	Informing the Design of Collaborative Activities in MOOCs using Actionable Predictions. , 2019, , .		1
20	Creating collaborative groups in a MOOC: a homogeneous engagement grouping approach. Behaviour and Information Technology, 2019, 38, 1107-1121.	4.0	30
21	Aligning learning design and learning analytics through instructor involvement: a MOOC case study. Interactive Learning Environments, 2019, 27, 685-698.	6.4	22
22	Towards the Enactment of Learning Situations Connecting Formal and Non-Formal Learning in SLEs. Lecture Notes in Educational Technology, 2019, , 187-190.	0.8	8
23	The Potential of Open Data to Automatically Create Learning Resources for Smart Learning Environments. Proceedings (mdpi), 2019, 31, 61.	0.2	3
24	Exploiting the Web of Data to bridge formal and informal learning experiences. , 2019, , .		2
25	Online machine learning algorithms to predict link quality in community wireless mesh networks. Computer Networks, 2018, 132, 68-80.	5.1	23
26	SmartLET. , 2018, , .		8
27	A self-scalable distributed network simulation environment based on cloud computing. Cluster Computing, 2018, 21, 1899-1915.	5.0	3
28	Predicting the decrease of engagement indicators in a MOOC. , 2017, , .		37
29	How Gamification Is Being Implemented in MOOCs? A Systematic Literature Review. Lecture Notes in Computer Science, 2017, , 441-447.	1.3	9
30	Enriching the Web of Data with Educational Information Using We-Share. International Review of Research in Open and Distance Learning, 2017, 18, .	1.8	1
31	From Low-Scale to Collaborative, Gamified and Massive-Scale Courses: Redesigning a MOOC. Lecture Notes in Computer Science, 2017, , 77-87.	1.3	5
32	Automatic Group Formation in a MOOC Based on Students' Activity Criteria. Lecture Notes in Computer Science, 2017, , 179-193.	1.3	12
33	Influential factors for managing virtual groups in massive and variable scale courses. , 2016, , .		1
34	From face-to-face to distance LMS-mediated collaborative learning situations with GLUE!. Computer Applications in Engineering Education, 2015, 23, 527-536.	3.4	3
35	Cloud computing and education: A state-of-the-art survey. Computers and Education, 2015, 80, 132-151.	8.3	234
36	Towards Teacher-Managed Deployment andÂIntegration of Non-SaaS Tools in Virtual Learning Environments. Lecture Notes in Computer Science, 2015, , 564-567.	1.3	0

#	Article	IF	CITATIONS
37	Cloud-based simulation for education. , 2013, , .		1
38	GLUE!: An architecture for the integration of external tools in Virtual Learning Environments. Computers and Education, 2013, 60, 122-137.	8.3	47
39	Automatic Retrieval of Educational ICT Tool Descriptions from the Web of Data. , 2012, , .		О
40	A Linked Data approach for the discovery of educational ICT tools in the Web of Data. Computers and Education, 2012, 59, 952-962.	8.3	16
41	A grid serviceâ€based Distributed Network Simulation Environment for computer networks education. Computer Applications in Engineering Education, 2012, 20, 654-665.	3.4	7
42	Integration of External Tools in Virtual Learning Environments: Main Design Issues and Alternatives. , 2010, , .		4
43	Semantic search of tools for collaborative learning with the Ontoolsearch system. Computers and Education, 2010, 54, 835-848.	8.3	26
44	A Generic Specification of the Data-Flow Issue in the Learning Design Field. , 2009, , .		1
45	Grid Service-Based Benchmarking Tool for Computer Architecture Courses. Lecture Notes in Computer Science, 2009, , 621-626.	1.3	1
46	Gridcole: A tailorable grid service based system that supports scripted collaborative learning. Computers and Education, 2008, 51, 155-172.	8.3	61
47	LeadFlow4LD: Learning and Data Flow Composition-Based Solution for Learning Design in CSCL. Lecture Notes in Computer Science, 2008, , 266-280.	1.3	3
48	Data Flow between Tools: Towards a Composition-Based Solution for Learning Design. , 2007, , .		6
49	A High-Level Reference Model for Reusable Object-Level Coordination Support in Groupware Applications. , 2007, , .		1
50	A Grid Service-Based Collaborative Network Simulation Environment for Computer Networks Education. , 2007, , .		4
51	Free- and Open-Source Software for a Course on Network Management: Authoring and Enactment of Scripts Based on Collaborative Learning Strategies. IEEE Transactions on Education, 2007, 50, 292-301.	2.4	22
52	A semantic approach to discovering learning services in grid-based collaborative systems. Future Generation Computer Systems, 2006, 22, 709-719.	7.5	22
53	Ontoolcole: An Ontology for the Semantic Search of CSCL Services. Lecture Notes in Computer Science, 2006, , 310-325.	1.3	2
54	Prototype-Based Handwriting Recognition Using Shape and Execution Prototypes. , 2005, , 67-88.		0

Prototype-Based Handwriting Recognition Using Shape and Execution Prototypes. , 2005, , 67-88. 54

#	Article	IF	CITATIONS
55	Semantic search of learning services in a grid-based collaborative system. , 2005, , .		5
56	Grid Characteristics and Uses: A Grid Definition. Lecture Notes in Computer Science, 2004, , 291-298.	1.3	69
57	Grid Computing and Component-Based Software Engineering in Computer Supported Collaborative Learning. Lecture Notes in Computer Science, 2004, , 495-498.	1.3	1
58	A Tailorable Collaborative Learning System That Combines OGSA Grid Services and IMS-LD Scripting. Lecture Notes in Computer Science, 2004, , 305-321.	1.3	15
59	Automatic extraction of human-recognizable shape and execution prototypes of handwritten characters. Pattern Recognition, 2003, 36, 1605-1617.	8.1	11