Mark A Magnuson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6618316/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A developmental lineage-based gene co-expression network for mouse pancreatic β-cells reveals a role for <i>Zfp800</i> in pancreas development. Development (Cambridge), 2021, 148, .	1.2	12
2	Mining the 99 Lives Cat Genome Sequencing Consortium database implicates genes and variants for the <i>Ticked</i> locus in domestic cats (<i>FelisÂcatus</i>). Animal Genetics, 2021, 52, 321-332.	0.6	9
3	Temporal Transcriptome Analysis Reveals Dynamic Gene Expression Patterns Driving β-Cell Maturation. Frontiers in Cell and Developmental Biology, 2021, 9, 648791.	1.8	9
4	Insm1, Neurod1, and Pax6 promote murine pancreatic endocrine cell development through overlapping yet distinct RNA transcription and splicing programs. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	2
5	Microtubules regulate pancreatic β-cell heterogeneity via spatiotemporal control of insulin secretion hot spots. ELife, 2021, 10, .	2.8	11
6	Excitotoxicity and Overnutrition Additively Impair Metabolic Function and Identity of Pancreatic β-Cells. Diabetes, 2020, 69, 1476-1491.	0.3	16
7	Mutations in the Kinesin-2 Motor KIF3B Cause an Autosomal-Dominant Ciliopathy. American Journal of Human Genetics, 2020, 106, 893-904.	2.6	29
8	Glucose Regulates Microtubule Disassembly and the Dose of Insulin Secretion via Tau Phosphorylation. Diabetes, 2020, 69, 1936-1947.	0.3	23
9	Gene network transitions in embryos depend upon interactions between a pioneer transcription factor and core histones. Nature Genetics, 2020, 52, 418-427.	9.4	57
10	Myeloid Cell-Derived HB-EGF Drives Tissue Recovery After Pancreatitis. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 173-192.	2.3	23
11	The Pdx1-Bound Swi/Snf Chromatin Remodeling Complex Regulates Pancreatic Progenitor Cell Proliferation and Mature Islet β-Cell Function. Diabetes, 2019, 68, 1806-1818.	0.3	31
12	Transgene-associated human growth hormone expression in pancreatic β-cells impairs identification of sex-based gene expression differences. American Journal of Physiology - Endocrinology and Metabolism, 2019, 316, E196-E209.	1.8	22
13	Inactivation of mTORC2 in macrophages is a signature of colorectal cancer that promotes tumorigenesis. JCI Insight, 2019, 4, .	2.3	19
14	Synaptotagmin 4 Regulates Pancreatic β Cell Maturation by Modulating the Ca2+ Sensitivity of Insulin Secretion Vesicles. Developmental Cell, 2018, 45, 347-361.e5.	3.1	73
15	Alpha to Beta Cell Reprogramming: Stepping toward a New Treatment for Diabetes. Cell Stem Cell, 2018, 22, 12-13.	5.2	11
16	Pancreatic islet-autonomous insulin and smoothened-mediated signalling modulate identity changes of glucagon+ α-cells. Nature Cell Biology, 2018, 20, 1267-1277.	4.6	54
17	Forebrain Ptf1a Is Required for Sexual Differentiation of the Brain. Cell Reports, 2018, 24, 79-94.	2.9	21
18	Cytosolic phosphoenolpyruvate carboxykinase as a cataplerotic pathway in the small intestine. American Journal of Physiology - Renal Physiology, 2018, 315, G249-G258.	1.6	16

#	Article	IF	CITATIONS
19	ROCK-nmMyoll, Notch, and <i>Neurog3</i> gene-dosage link epithelial morphogenesis with cell fate in the pancreatic endocrine-progenitor niche. Development (Cambridge), 2018, 145, .	1.2	30
20	The mammal-specific <i>Pdx1</i> Area II enhancer has multiple essential functions in early endocrine-cell specification and postnatal β-cell maturation. Development (Cambridge), 2017, 144, 248-257.	1.2	10
21	Rictor/mTORC2 deficiency enhances keratinocyte stress tolerance via mitohormesis. Cell Death and Differentiation, 2017, 24, 731-746.	5.0	24
22	c-Myc downregulation is required for preacinar to acinar maturation and pancreatic homeostasis. Gut, 2017, 67, gutjnl-2016-312306.	6.1	18
23	Chronic β-Cell Depolarization Impairs β-Cell Identity by Disrupting a Network of Ca2+-Regulated Genes. Diabetes, 2017, 66, 2175-2187.	0.3	61
24	Defining a Novel Role for the Pdx1 Transcription Factor in Islet β-Cell Maturation and Proliferation During Weaning. Diabetes, 2017, 66, 2830-2839.	0.3	51
25	FUCCI tracking shows cellâ€cycleâ€dependent <i>Neurog3</i> variation in pancreatic progenitors. Genesis, 2017, 55, e23050.	0.8	2
26	Transcriptional Maintenance of Pancreatic Acinar Identity, Differentiation, and Homeostasis by PTF1A. Molecular and Cellular Biology, 2016, 36, 3033-3047.	1.1	80
27	Precommitment low-level <i>Neurog3</i> expression defines a long-lived mitotic endocrine-biased progenitor pool that drives production of endocrine-committed cells. Genes and Development, 2016, 30, 1852-1865.	2.7	64
28	Pancreatic Inflammation Redirects Acinar to \hat{I}^2 Cell Reprogramming. Cell Reports, 2016, 17, 2028-2041.	2.9	24
29	<i>Setd5</i> is essential for mammalian development and co-transcriptional regulation of histone acetylation. Development (Cambridge), 2016, 143, 4595-4607.	1.2	54
30	Regional Variations in Farming Household Structure for the Swedish Elderly, 1890–1908. Journal of Family History, 2016, 41, 378-401.	0.2	2
31	BMP Antagonist Gremlin 2 Limits Inflammation After Myocardial Infarction. Circulation Research, 2016, 119, 434-449.	2.0	40
32	p16Ink4a-induced senescence of pancreatic beta cells enhances insulin secretion. Nature Medicine, 2016, 22, 412-420.	15.2	252
33	p73 Is Required for Multiciliogenesis and Regulates the Foxj1-Associated Gene Network. Cell Reports, 2016, 14, 2289-2300.	2.9	120
34	Insm1 promotes neurogenic proliferation in delaminated otic progenitors. Mechanisms of Development, 2015, 138, 233-245.	1.7	33
35	Activation of FoxM1 Revitalizes the Replicative Potential of Aged β-Cells in Male Mice and Enhances Insulin Secretion. Diabetes, 2015, 64, 3829-3838.	0.3	26
36	A Gene Regulatory Network Cooperatively Controlled by Pdx1 and Sox9 Governs Lineage Allocation of Foregut Progenitor Cells. Cell Reports, 2015, 13, 326-336.	2.9	82

#	Article	IF	CITATIONS
37	mTORC2 Regulates Cardiac Response to Stress by Inhibiting MST1. Cell Reports, 2015, 11, 125-136.	2.9	110
38	Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver. Journal of Clinical Investigation, 2015, 125, 4447-4462.	3.9	320
39	<i>Insm1</i> promotes endocrine cell differentiation by modulating the expression of a network of genes that includes <i>Neurog3</i> and <i>Ripply3</i> . Development (Cambridge), 2014, 141, 2939-2949.	1.2	63
40	Impaired Islet Function in Commonly Used Transgenic Mouse Lines due to Human Growth Hormone Minigene Expression. Cell Metabolism, 2014, 20, 979-990.	7.2	145
41	Cytokine-driven beta-cell production in vivo. Nature Biotechnology, 2014, 32, 63-64.	9.4	0
42	Dominant and context-specific control of endodermal organ allocation by Ptf1a. Development (Cambridge), 2014, 141, 4385-4394.	1.2	21
43	Temporal identity transition from Purkinje cell progenitors to GABAergic interneuron progenitors in the cerebellum. Nature Communications, 2014, 5, 3337.	5.8	92
44	Type 2 Diabetes and Congenital Hyperinsulinism Cause DNA Double-Strand Breaks and p53 Activity in β Cells. Cell Metabolism, 2014, 19, 109-121.	7.2	123
45	The MafA Transcription Factor Becomes Essential to Islet β-Cells Soon After Birth. Diabetes, 2014, 63, 1994-2005.	0.3	106
46	Generation of islet-like cells from mouse gall bladder by direct ex vivo reprogramming. Stem Cell Research, 2013, 11, 503-515.	0.3	44
47	Pancreas-Specific Cre Driver Lines and Considerations for Their Prudent Use. Cell Metabolism, 2013, 18, 9-20.	7.2	170
48	Spatiotemporal patterns of multipotentiality in <i>Ptf1a</i> -expressing cells during pancreas organogenesis and injury-induced facultative restoration. Development (Cambridge), 2013, 140, 751-764.	1.2	259
49	Nkx2.2:Cre knockâ€in mouse line: A novel tool for pancreas―and CNSâ€specific gene deletion. Genesis, 2013, 51, 844-851.	0.8	19
50	The histone demethylase Jmjd3 sequentially associates with the transcription factors Tbx3 and Eomes to drive endoderm differentiation. EMBO Journal, 2013, 32, 1393-1408.	3.5	94
51	Nkx6.1 Controls a Gene Regulatory Network Required for Establishing and Maintaining Pancreatic Beta Cell Identity. PLoS Genetics, 2013, 9, e1003274.	1.5	212
52	Research Resource: dkCOIN, the National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK) Consortium Interconnectivity Network: A Pilot Program to Aggregate Research Resources Generated by Multiple Research Consortia. Molecular Endocrinology, 2012, 26, 1675-1681.	3.7	3
53	Engineering Artificial Signaling Centers to Polarize Embryoid Body Differentiation. Stem Cells and Development, 2012, 21, 647-653.	1.1	6
54	<i>Mind bomb 1</i> is required for pancreatic Î ² -cell formation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7356-7361.	3.3	74

#	Article	IF	CITATIONS
55	Partial promoter substitutions generating transcriptional sentinels of diverse signaling pathways in embryonic stem cells and mice. DMM Disease Models and Mechanisms, 2012, 5, 956-66.	1.2	18
56	Dual Lineage-Specific Expression of Sox17 During Mouse Embryogenesis. Stem Cells, 2012, 30, 2297-2308.	1.4	47
57	Anks4b, a Novel Target of HNF4α Protein, Interacts with GRP78 Protein and Regulates Endoplasmic Reticulum Stress-induced Apoptosis in Pancreatic β-Cells. Journal of Biological Chemistry, 2012, 287, 23236-23245.	1.6	27
58	Ghrelin Expression in the Mouse Pancreas Defines a Unique Multipotent Progenitor Population. PLoS ONE, 2012, 7, e52026.	1.1	69
59	A recombinaseâ€mediated cassette exchangeâ€derived cyan fluorescent protein reporter allele for Pdx1. Genesis, 2012, 50, 384-392.	0.8	8
60	Generation of <i>Nkx2.2:lacZ</i> mice using recombinationâ€mediated cassette exchange technology. Genesis, 2012, 50, 612-624.	0.8	12
61	Ongoing Notch signaling maintains phenotypic fidelity in the adult exocrine pancreas. Developmental Biology, 2012, 362, 57-64.	0.9	76
62	Control of Pancreatic β Cell Regeneration by Glucose Metabolism. Cell Metabolism, 2011, 13, 440-449.	7.2	266
63	Quantification of factors influencing fluorescent protein expression using RMCE to generate an allelic series in the <i>ROSA26</i> locus in mice. DMM Disease Models and Mechanisms, 2011, 4, 537-547.	1.2	43
64	Glucose Regulates Cyclin D2 Expression in Quiescent and Replicating Pancreatic β-Cells Through Glycolysis and Calcium Channels. Endocrinology, 2011, 152, 2589-2598.	1.4	58
65	Loss of Foxd3 Results in Decreased β-Cell Proliferation and Glucose Intolerance During Pregnancy. Endocrinology, 2011, 152, 4589-4600.	1.4	30
66	Informatic and Functional Approaches to Identifying a Regulatory Region for the Cardiac Sodium Channel. Circulation Research, 2011, 109, 38-46.	2.0	18
67	Striking In Vivo Phenotype of a Disease-Associated Human <i>SCN5A</i> Mutation Producing Minimal Changes in Vitro. Circulation, 2011, 124, 1001-1011.	1.6	137
68	Nkx2.2 repressor complex regulates islet β-cell specification and prevents β-to-α-cell reprogramming. Genes and Development, 2011, 25, 2291-2305.	2.7	170
69	Response to Comment on: Kumar et al. Fat Cell-Specific Ablation of Rictor in Mice Impairs Insulin-Regulated Fat Cell and Whole-Body Glucose and Lipid Metabolism. Diabetes 2010;59:1397-1406. Diabetes, 2011, 60, e15-e15.	0.3	0
70	Rictor/mTORC2 Is Essential for Maintaining a Balance Between β-Cell Proliferation and Cell Size. Diabetes, 2011, 60, 827-837.	0.3	136
71	Mammalian Target of Rapamycin Protein Complex 2 Regulates Differentiation of Th1 and Th2 Cell Subsets via Distinct Signaling Pathways. Immunity, 2010, 32, 743-753.	6.6	413
72	Rictor is a novel target of p70 S6 kinase-1. Oncogene, 2010, 29, 1003-1016.	2.6	137

#	Article	IF	CITATIONS
73	Disruption of PPARÎ ³ signaling results in mouse prostatic intraepithelial neoplasia involving active autophagy. Cell Death and Differentiation, 2010, 17, 469-481.	5.0	50
74	Fat Cell–Specific Ablation of <i>Rictor</i> in Mice Impairs Insulin-Regulated Fat Cell and Whole-Body Glucose and Lipid Metabolism. Diabetes, 2010, 59, 1397-1406.	0.3	238
75	Rictor Phosphorylation on the Thr-1135 Site Does Not Require Mammalian Target of Rapamycin Complex 2. Molecular Cancer Research, 2010, 8, 896-906.	1.5	61
76	Dysregulation of the Norepinephrine Transporter Sustains Cortical Hypodopaminergia and Schizophrenia-Like Behaviors in Neuronal Rictor Null Mice. PLoS Biology, 2010, 8, e1000393.	2.6	81
77	Replacement of Rbpj With Rbpjl in the PTF1 Complex Controls the Final Maturation of Pancreatic Acinar Cells. Gastroenterology, 2010, 139, 270-280.	0.6	85
78	MafA and MafB Regulate Genes Critical to β-Cells in a Unique Temporal Manner. Diabetes, 2010, 59, 2530-2539.	0.3	217
79	Sustained <i>Neurog3</i> expression in hormone-expressing islet cells is required for endocrine maturation and function. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9715-9720.	3.3	143
80	New Complexity in Differentiating Stem Cells Toward Hepatic and Pancreatic Fates. Science Signaling, 2009, 2, pe50.	1.6	4
81	mTOR Complex 2 Is Required for the Development of Prostate Cancer Induced by Pten Loss in Mice. Cancer Cell, 2009, 15, 148-159.	7.7	358
82	Multiple, temporal-specific roles for HNF6 in pancreatic endocrine and ductal differentiation. Mechanisms of Development, 2009, 126, 958-973.	1.7	89
83	Hepatic energy state is regulated by glucagon receptor signaling in mice. Journal of Clinical Investigation, 2009, 119, 2412-2422.	3.9	91
84	pdx-1 function is specifically required in embryonic βÂcells to generate appropriate numbers of endocrine cell types and maintain glucose homeostasis. Developmental Biology, 2008, 314, 406-417.	0.9	165
85	Pdx-1 and Ptf1a concurrently determine fate specification of pancreatic multipotent progenitor cells. Developmental Biology, 2008, 316, 74-86.	0.9	164
86	A nonclassical bHLH–Rbpj transcription factor complex is required for specification of GABAergic neurons independent of Notch signaling. Genes and Development, 2008, 22, 166-178.	2.7	116
87	Role of Sulfonylurea Receptor Type 1 Subunits of ATP-Sensitive Potassium Channels in Myocardial Ischemia/Reperfusion Injury. Circulation, 2008, 117, 1405-1413.	1.6	36
88	A Rictor-Myo1c Complex Participates in Dynamic Cortical Actin Events in 3T3-L1 Adipocytes. Molecular and Cellular Biology, 2008, 28, 4215-4226.	1.1	71
89	Muscle-Specific Deletion of Rictor Impairs Insulin-Stimulated Glucose Transport and Enhances Basal Glycogen Synthase Activity. Molecular and Cellular Biology, 2008, 28, 61-70.	1.1	188
90	Differential Structure of Atrial and Ventricular K _{ATP} . Circulation Research, 2008, 103, 1458-1465.	2.0	118

#	Article	IF	CITATIONS
91	Sugar binding to recombinant wild-type and mutant glucokinase monitored by kinetic measurement and tryptophan fluorescence. Biochemical Journal, 2008, 413, 269-280.	1.7	32
92	Hepatic glucose sensing: does flux matter?. Journal of Clinical Investigation, 2008, 118, 841-844.	3.9	6
93	mTORC2 in T Lymphocyte Development and Proliferation. FASEB Journal, 2008, 22, 661.13.	0.2	0
94	Targeted disruption of hepatic frataxin expression causes impaired mitochondrial function, decreased life span and tumor growth in mice. Human Molecular Genetics, 2007, 16, 2987-2987.	1.4	0
95	Early pancreatic development requires the vertebrate Suppressor of Hairless (RBPJ) in the PTF1 bHLH complex. Genes and Development, 2007, 21, 2629-2643.	2.7	143
96	Pancreatic Glucokinase Is Activated by Insulin-Like Growth Factor-I. Endocrinology, 2007, 148, 2904-2913.	1.4	26
97	Glucokinase Thermolability and Hepatic Regulatory Protein Binding Are Essential Factors for Predicting the Blood Glucose Phenotype of Missense Mutations. Journal of Biological Chemistry, 2007, 282, 13906-13916.	1.6	35
98	Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochemical Journal, 2007, 405, 513-522.	1.7	400
99	Directed differentiation of embryonic stem cells into bladder tissue. Developmental Biology, 2007, 304, 556-566.	0.9	93
100	Cytosolic Phosphoenolpyruvate Carboxykinase Does Not Solely Control the Rate of Hepatic Gluconeogenesis in the Intact Mouse Liver. Cell Metabolism, 2007, 5, 313-320.	7.2	232
101	Loss of Myt1 function partially compromises endocrine islet cell differentiation and pancreatic physiological function in the mouse. Mechanisms of Development, 2007, 124, 898-910.	1.7	64
102	Caveats and considerations for performing pancreasâ€ s pecific gene manipulations in the mouse. Diabetes, Obesity and Metabolism, 2007, 9, 5-13.	2.2	5
103	Obesity and the \hat{I}^2 cell: lessons from leptin. Journal of Clinical Investigation, 2007, 117, 2753-2756.	3.9	41
104	Selective Deletion of Pten in Pancreatic β Cells Leads to Increased Islet Mass and Resistance to STZ-Induced Diabetes. Molecular and Cellular Biology, 2006, 26, 2772-2781.	1.1	127
105	Multiallelic Disruption of the rictor Gene in Mice Reveals that mTOR Complex 2 Is Essential for Fetal Growth and Viability. Developmental Cell, 2006, 11, 583-589.	3.1	357
106	Recombinase-mediated cassette exchange to rapidly and efficiently generate mice with human cardiac sodium channels. Genesis, 2006, 44, 556-564.	0.8	19
107	Cholinergic regulation of fuel-induced hormone secretion and respiration of SUR1â^/â^' mouse islets. American Journal of Physiology - Endocrinology and Metabolism, 2006, 291, E525-E535.	1.8	27
108	Ptf1a determines horizontal and amacrine cell fates during mouse retinal development. Development (Cambridge), 2006, 133, 4439-4450.	1.2	202

#	Article	IF	CITATIONS
109	RIP-Cre Revisited, Evidence for Impairments of Pancreatic β-Cell Function. Journal of Biological Chemistry, 2006, 281, 2649-2653.	1.6	222
110	Hepatocyte Nuclear Factor-4α Is Essential for Glucose-stimulated Insulin Secretion by Pancreatic β-Cells. Journal of Biological Chemistry, 2006, 281, 5246-5257.	1.6	148
111	Targeted deletion of a cis-regulatory region reveals differential gene dosage requirements for Pdx1 in foregut organ differentiation and pancreas formation. Genes and Development, 2006, 20, 253-266.	2.7	139
112	The network of glucokinase-expressing cells in glucose homeostasis and the potential of glucokinase activators for diabetes therapy. Diabetes, 2006, 55, 1-12.	0.3	117
113	Strategies for the Use of Site-Specific Recombinases in Genome Engineering. , 2005, 103, 245-258.		23
114	Thiazolidinediones expand body fluid volume through PPARÎ ³ stimulation of ENaC-mediated renal salt absorption. Nature Medicine, 2005, 11, 861-866.	15.2	573
115	Inactivation of TGF-β signaling in hepatocytes results in an increased proliferative response after partial hepatectomy. Oncogene, 2005, 24, 3028-3041.	2.6	112
116	Optical imaging of pancreatic beta cells in living mice expressing a mouse insulin I promoter-firefly luciferase transgene. Genesis, 2005, 43, 80-86.	0.8	54
117	Impaired glucagon secretory responses in mice lacking the type 1 sulfonylurea receptor. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E570-E577.	1.8	38
118	Targeted disruption of hepatic frataxin expression causes impaired mitochondrial function, decreased life span and tumor growth in mice. Human Molecular Genetics, 2005, 14, 3857-3864.	1.4	123
119	Conditional Knockout of Macrophage PPARγIncreases Atherosclerosis in C57BL/6 and Low-Density Lipoprotein Receptor–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1647-1653.	1.1	173
120	Insights into the Structure and Regulation of Glucokinase from a Novel Mutation (V62M), Which Causes Maturity-onset Diabetes of the Young. Journal of Biological Chemistry, 2005, 280, 14105-14113.	1.6	87
121	Energy Homeostasis and Gastrointestinal Endocrine Differentiation Do Not Require the Anorectic Hormone Peptide YY. Molecular and Cellular Biology, 2005, 25, 4189-4199.	1.1	50
122	Deletion of PPARÂ in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6207-6212.	3.3	424
123	Targeted Inactivation of Hepatocyte Growth Factor Receptor c-met in Â-Cells Leads to Defective Insulin Secretion and GLUT-2 Downregulation Without Alteration of Â-Cell Mass. Diabetes, 2005, 54, 2090-2102.	0.3	93
124	5-Amino-imidazole carboxamide riboside acutely potentiates glucose-stimulated insulin secretion from mouse pancreatic islets by KATP channel-dependent and -independent pathways. Biochemical and Biophysical Research Communications, 2005, 330, 1073-1079.	1.0	45
125	IMAGING BETA CELL DEVELOPMENT IN REAL-TIME USING PANCREATIC EXPLANTS FROM MICE WITH GREEN FLUORESCENT PROTEIN–LABELED PANCREATIC BETA CELLS. In Vitro Cellular and Developmental Biology - Animal, 2005, 41, 7.	0.7	7
126	Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2082-2087.	3.3	386

#	Article	IF	CITATIONS
127	Conditional Inactivation of the Men1 Gene Leads to Pancreatic and Pituitary Tumorigenesis but Does Not Affect Normal Development of These Tissues. Molecular and Cellular Biology, 2004, 24, 3125-3131.	1.1	129
128	Impaired Tricarboxylic Acid Cycle Activity in Mouse Livers Lacking Cytosolic Phosphoenolpyruvate Carboxykinase. Journal of Biological Chemistry, 2004, 279, 48941-48949.	1.6	141
129	Hepatic Glucokinase Is Required for the Synergistic Action of ChREBP and SREBP-1c on Glycolytic and Lipogenic Gene Expression. Journal of Biological Chemistry, 2004, 279, 20314-20326.	1.6	376
130	Restitution of defective glucose-stimulated insulin release of sulfonylurea type 1 receptor knockout mice by acetylcholine. American Journal of Physiology - Endocrinology and Metabolism, 2004, 286, E834-E843.	1.8	48
131	The Pal elements in the upstream glucokinase promoter exhibit dyad symmetry and display cell-specific enhancer activity when multimerised. Diabetologia, 2004, 47, 1632-1640.	2.9	8
132	Generation of a conditional allele of the mouse prostaglandin EP4 receptor. Genesis, 2004, 40, 7-14.	0.8	90
133	Efficient DNA cassette exchange in mouse embryonic stem cells by staggered positive-negative selection. Genesis, 2004, 39, 256-262.	0.8	23
134	Insulin secretory defects and impaired islet architecture in pancreatic β-cell-specific STAT3 knockout mice. Biochemical and Biophysical Research Communications, 2004, 319, 1159-1170.	1.0	74
135	Rapid translocation of hepatic glucokinase in response to intraduodenal glucose infusion and changes in plasma glucose and insulin in conscious rats. American Journal of Physiology - Renal Physiology, 2004, 286, G627-G634.	1.6	62
136	Impaired insulin secretion and glucose tolerance in cell-selective CaV1.2 Ca2+ channel null mice. EMBO Journal, 2003, 22, 3844-3854.	3.5	205
137	Genetic rescue of Cdk4 null mice restores pancreatic β-cell proliferation but not homeostatic cell number. Oncogene, 2003, 22, 5261-5269.	2.6	118
138	Ectopically expressed PDX-1 in liver initiates endocrine and exocrine pancreas differentiation but causes dysmorphogenesis. Biochemical and Biophysical Research Communications, 2003, 310, 1017-1025.	1.0	115
139	Allosteric Activators of Glucokinase: Potential Role in Diabetes Therapy. Science, 2003, 301, 370-373.	6.0	474
140	Transgenic mice with green fluorescent protein-labeled pancreatic β-cells. American Journal of Physiology - Endocrinology and Metabolism, 2003, 284, E177-E183.	1.8	284
141	Gene-altered Mice and Metabolic Flux Control. Journal of Biological Chemistry, 2003, 278, 32485-32488.	1.6	30
142	Of Mice and MEN1: Insulinomas in a Conditional Mouse Knockout. Molecular and Cellular Biology, 2003, 23, 6075-6085.	1.1	221
143	Insights Into the Biochemical and Genetic Basis of Glucokinase Activation From Naturally Occurring Hypoglycemia Mutations. Diabetes, 2003, 52, 2433-2440.	0.3	150
144	Liver-Specific Reactivation of the Inactivated Hnf - 1 α Gene: Elimination of Liver Dysfunction To Establish a Mouse MODY3 Model. Molecular and Cellular Biology, 2003, 23, 923-932.	1.1	13

#	Article	IF	CITATIONS
145	Mechanisms by Which Liver-Specific PEPCK Knockout Mice Preserve Euglycemia During Starvation. Diabetes, 2003, 52, 1649-1654.	0.3	103
146	Targeted Elimination of Peroxisome Proliferator-Activated Receptor Î ³ in Î ² Cells Leads to Abnormalities in Islet Mass without Compromising Glucose Homeostasis. Molecular and Cellular Biology, 2003, 23, 7222-7229.	1.1	141
147	Inactivation of the Hepatic Cytochrome P450 System by Conditional Deletion of Hepatic Cytochrome P450 Reductase. Journal of Biological Chemistry, 2003, 278, 13480-13486.	1.6	233
148	Frataxin deficiency in pancreatic islets causes diabetes due to loss of β cell mass. Journal of Clinical Investigation, 2003, 112, 527-534.	3.9	112
149	The Second Activating Clucokinase Mutation (A456V): Implications for Glucose Homeostasis and Diabetes Therapy. Diabetes, 2002, 51, 1240-1246.	0.3	162
150	A Functional Link between Glucokinase Binding to Insulin Granules and Conformational Alterations in Response to Glucose and Insulin. Journal of Biological Chemistry, 2002, 277, 34168-34175.	1.6	71
151	Sulfonylurea Receptor Type 1 Knock-out Mice Have Intact Feeding-stimulated Insulin Secretion despite Marked Impairment in Their Response to Clucose. Journal of Biological Chemistry, 2002, 277, 37176-37183.	1.6	192
152	Generation and functional confirmation of a conditional null PPAR? allele in mice. Genesis, 2002, 32, 134-137.	0.8	26
153	Conditional inactivation of the TGF-? type II receptor using Cre:Lox. Genesis, 2002, 32, 73-75.	0.8	267
154	Oestrogen protects FKBP12.6 null mice from cardiac hypertrophy. Nature, 2002, 416, 334-337.	13.7	271
155	β-cell–specific deletion of the Igf1 receptor leads to hyperinsulinemia and glucose intolerance but does not alter β-cell mass. Nature Genetics, 2002, 31, 111-115.	9.4	345
156	Neonatal Diabetes Mellitus Due to Complete Glucokinase Deficiency. New England Journal of Medicine, 2001, 344, 1588-1592.	13.9	386
157	The Imidazoline RX871024 Stimulates Insulin Secretion in Pancreatic β-Cells from Mice Deficient in KATP Channel Function. Biochemical and Biophysical Research Communications, 2001, 284, 918-922.	1.0	15
158	Substrate-induced Nuclear Export and Peripheral Compartmentalization of Hepatic Glucokinase Correlates with Glycogen Deposition. International Journal of Experimental Diabetes Research, 2001, 2, 173-186.	1.0	22
159	Tissue-specific deletion of Foxa2 in pancreatic beta cells results in hyperinsulinemic hypoglycemia. Genes and Development, 2001, 15, 1706-1715.	2.7	164
160	Glucokinase Gene Locus Transgenic Mice Are Resistant to the Development of Obesity-Induced Type 2 Diabetes. Diabetes, 2001, 50, 622-629.	0.3	61
161	Alterations in the regulation of androgen-sensitive Cyp 4a monooxygenases cause hypertension. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 5211-5216.	3.3	228
162	Cell-specific Roles of Glucokinase in Glucose Homeostasis. Endocrine Reviews, 2001, 56, 195-218.	7.1	143

#	Article	IF	CITATIONS
163	Use of a Cre/Loxp Strategy in Mice to Determine the Cell-Specific Roles of Glucokinase in Mody-2. Growth Hormone, 2001, , 351-362.	0.2	0
164	Analysis of the Cre-mediated recombination driven by rat insulin promoter in embryonic and adult mouse pancreas. Genesis, 2000, 26, 139-142.	0.8	163
165	DNA excision in liver by an albumin-Cre transgene occurs progressively with age. Genesis, 2000, 26, 149-150.	0.8	339
166	Impaired insulin secretion and β-cell loss in tissue-specific knockout mice with mitochondrial diabetes. Nature Genetics, 2000, 26, 336-340.	9.4	417
167	Hepatocyte Nuclear Factor 3β (Foxa2) Is Dispensable for Maintaining the Differentiated State of the Adult Hepatocyte. Molecular and Cellular Biology, 2000, 20, 5175-5183.	1.1	132
168	Phosphoenolpyruvate Carboxykinase Is Necessary for the Integration of Hepatic Energy Metabolism. Molecular and Cellular Biology, 2000, 20, 6508-6517.	1.1	213
169	Hepatocyte-Specific Mutation Establishes Retinoid X Receptor α as a Heterodimeric Integrator of Multiple Physiological Processes in the Liver. Molecular and Cellular Biology, 2000, 20, 4436-4444.	1.1	227
170	Loss of Insulin Signaling in Hepatocytes Leads to Severe Insulin Resistance and Progressive Hepatic Dysfunction. Molecular Cell, 2000, 6, 87-97.	4.5	1,077
171	Characterization of Glucokinase Regulatory Protein-deficient Mice. Journal of Biological Chemistry, 2000, 275, 7826-7831.	1.6	110
172	Analysis of the Cre-mediated recombination driven by rat insulin promoter in embryonic and adult mouse pancreas. , 2000, 26, 139.		2
173	Phosphoenolpyruvate Carboxykinase Is Necessary for the Integration of Hepatic Energy Metabolism. Molecular and Cellular Biology, 2000, 20, 6508-6517.	1.1	19
174	Nuclear Import of Hepatic Glucokinase Depends upon Glucokinase Regulatory Protein, whereas Export Is Due to a Nuclear Export Signal Sequence in Glucokinase. Journal of Biological Chemistry, 1999, 274, 37125-37130.	1.6	125
175	Replacement by Homologous Recombination of the minK Gene With lacZ Reveals Restriction of minK Expression to the Mouse Cardiac Conduction System. Circulation Research, 1999, 84, 146-152.	2.0	179
176	Adenovirus-mediated Knockout of a Conditional Glucokinase Gene in Isolated Pancreatic Islets Reveals an Essential Role for Proximal Metabolic Coupling Events in Glucose-stimulated Insulin Secretion. Journal of Biological Chemistry, 1999, 274, 1000-1004.	1.6	65
177	Salt–sensitive hypertension and reduced fertility in mice lacking the prostaglandin EP2 receptor. Nature Medicine, 1999, 5, 217-220.	15.2	374
178	Mutants of glucokinase cause hypoglycaemia- and hyperglycaemia syndromes and their analysis illuminates fundamental quantitative concepts of glucose homeostasis. Diabetologia, 1999, 42, 1175-1186.	2.9	144
179	Isolation and characterization of the mouse cytosolic phosphoenolpyruvate carboxykinase (GTP) gene: evidence for tissue-specific hypersensitive sites. Molecular and Cellular Endocrinology, 1999, 148, 67-77.	1.6	13
180	Tissue-Specific Knockout of the Insulin Receptor in Pancreatic β Cells Creates an Insulin Secretory Defect Similar to that in Type 2 Diabetes. Cell, 1999, 96, 329-339.	13.5	1,093

#	Article	IF	CITATIONS
181	Dual Roles for Glucokinase in Glucose Homeostasis as Determined by Liver and Pancreatic β Cell-specific Gene Knock-outs Using Cre Recombinase. Journal of Biological Chemistry, 1999, 274, 305-315.	1.6	1,177
182	Mice Lacking α-Calcitonin Gene-Related Peptide Exhibit Normal Cardiovascular Regulation and Neuromuscular Development. Molecular and Cellular Neurosciences, 1999, 14, 99-120.	1.0	120
183	Pancreatic beta-cell glucokinase: closing the gap between theoretical concepts and experimental realities. Diabetes, 1998, 47, 307-315.	0.3	306
184	Dopamine Biosynthesis Is Selectively Abolished in Substantia Nigra/Ventral Tegmental Area but Not in Hypothalamic Neurons in Mice with Targeted Disruption of the Nurr1 Gene. Molecular and Cellular Neurosciences, 1998, 11, 36-46.	1.0	268
185	Targeted oncogenesis of hormone-negative pancreatic islet progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 8654-8659.	3.3	10
186	Effects of Increased Glucokinase Gene Copy Number on Glucose Homeostasis and Hepatic Glucose Metabolism. Journal of Biological Chemistry, 1997, 272, 22570-22575.	1.6	136
187	Structural instability of mutant β-cell glucokinase: implications for the molecular pathogenesis of maturity-onset diabetes of the young (type-2). Biochemical Journal, 1997, 322, 57-63.	1.7	49
188	Effects of altered glucokinase gene copy number on blood glucose homoeostasis. Biochemical Society Transactions, 1997, 25, 113-117.	1.6	18
189	Cell-specific Expression and Regulation of a Glucokinase Gene Locus Transgene. Journal of Biological Chemistry, 1997, 272, 22564-22569.	1.6	50
190	Variable Expression of Hepatic Glucokinase in Mice Is Due to a Regulational Locus That Cosegregates with the Glucokinase Gene. Genomics, 1997, 45, 185-193.	1.3	4
191	Essential role of the tyrosine kinase substrate phospholipase C-Â1 in mammalian growth and development. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 2999-3003.	3.3	251
192	EXPRESSION OF α 2 -ADRENERGIC RECEPTOR SUBTYPES IN THE MOUSE BRAIN: EVALUATION OF SPATIAL AND TEMPORAL INFORMATION IMPARTED BY 3 kb OF 5′ REGULATORY SEQUENCE FOR THE α 2A AR-RECEPTOR GI IN TRANSGENIC ANIMALS. Neuroscience, 1996, 74, 199-218.	ENIE1	103
193	Induction of the Glucokinase Gene by Insulin in Cultured Neonatal Rat Hepatocytes. Relationship with DNase-I Hypersensitive Sites and Functional Analysis of a Putative Insulin-Response Element. FEBS Journal, 1996, 236, 214-221.	0.2	13
194	Quantitative Subcellular Imaging of Glucose Metabolism within Intact Pancreatic Islets. Journal of Biological Chemistry, 1996, 271, 3647-3651.	1.6	193
195	Characterization of the Pal motifs in the upstream glucokinase promoter: binding of a cell type-specific protein complex correlates with transcriptional activation. Molecular Endocrinology, 1996, 10, 723-731.	3.7	8
196	Cell-Specific Differences in DNase I Hypersensitivity between the Two Promoters of the Rat Glucokinase Gene. Biochemical and Biophysical Research Communications, 1995, 215, 272-279.	1.0	2
197	Cloning and Characterization of the Mouse Glucokinase Gene Locus and Identification of Distal Liver-Specific DNase I Hypersensitive Sites. Genomics, 1995, 29, 740-750.	1.3	34
198	Quantitative imaging of green fluorescent protein in cultured cells: Comparison of microscopic techniques, use in fusion proteins and detection limits. Journal of Microscopy, 1995, 180, 109-116.	0.8	186

#	Article	IF	CITATIONS
199	Identification and functional characterization of the bovine manganous superoxide dismutase promoter American Journal of Respiratory Cell and Molecular Biology, 1994, 10, 113-121.	1.4	50
200	Ribozyme-mediated attenuation of pancreatic beta-cell glucokinase expression in transgenic mice results in impaired glucose-induced insulin secretion Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 2051-2055.	3.3	116
201	Coexpression of glucose transporters and glucokinase in Xenopus oocytes indicates that both glucose transport and phosphorylation determine glucose utilization Journal of Clinical Investigation, 1994, 94, 1373-1382.	3.9	15
202	Effects of glucose on insulin secretion, glucokinase activity, and transgene expression in transgenic mouse islets containing an upstream glucokinase promoter-human growth hormone fusion gene. Diabetes, 1994, 43, 1138-1145.	0.3	2
203	Glucokinase Gene Expression and Regulation. , 1994, , 155-174.		5
204	Expression of Human Growth Hormone Fusion Genes in Cultured Lung Endothelial Cells and in the Lungs of Mice. American Journal of Respiratory Cell and Molecular Biology, 1993, 8, 209-213.	1.4	35
205	Evolutionary conservation of elements in the upstream glucokinase promoter. Biochemical Society Transactions, 1993, 21, 160-163.	1.6	8
206	Heterogeneous expression of glucokinase among pancreatic beta cells Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 2619-2623.	3.3	108
207	Tissue-Specific regulation of glucokinase gene expression. Journal of Cellular Biochemistry, 1992, 48, 115-121.	1.2	61
208	Concordant glucose induction of glucokinase, glucose usage, and glucose-stimulated insulin release in pancreatic islets maintained in organ culture. Diabetes, 1992, 41, 792-806.	0.3	36
209	Nucleotide sequence of mouse SCIPcDNA, a POU-domain transcription factor. Nucleic Acids Research, 1991, 19, 956-956.	6.5	5
210	Identification of a sequence in the PEPCK gene that mediates a negative effect of insulin on transcription. Science, 1990, 249, 533-537.	6.0	358
211	Immunohistochemical localization of phosphoenolpyruvate carboxykinase in adult and developing mouse tissues Journal of Histochemistry and Cytochemistry, 1990, 38, 171-178.	1.3	65
212	Regulation of Phosphoenolpyruvate Carboxykinase Gene Expression by Insulin. Use of the Stable Transfection Approach to Locate an Insulin Responsive Sequence. Molecular Endocrinology, 1990, 4, 1302-1310.	3.7	111
213	Glucokinase gene structure. Functional implications of molecular genetic studies. Diabetes, 1990, 39, 523-527.	0.3	44
214	Coding Nucleotide Sequence of rat Malic Enzyme mRNA and Tissue Specific Regulation by Thyroid Hormone. Endocrine Research, 1989, 15, 547-564.	0.6	7
215	Rat glucokinase gene: structure and regulation by insulin Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 4838-4842.	3.3	218
216	Structural characterization of the rat malic enzyme gene Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 4912-4916.	3.3	20

#	Article	IF	CITATIONS
217	Rapid Communication: In vivo Transfection of Murine Lungs with a Functioning Prokaryotic Gene using a Liposome Vehicle. American Journal of the Medical Sciences, 1989, 298, 278-281.	0.4	204
218	Transcriptional regulation by thyroid hormone of an mRNA homologous to a protease inhibitor. Biochemistry, 1986, 25, 5831-5834.	1.2	15
219	Tissue-specific regulation of two functional malic enzyme mRNAs by triiodothyronine. Biochemistry, 1985, 24, 5581-5586.	1.2	89