
Min Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6617903/publications.pdf Version: 2024-02-01

Мім 7нії

#	Article	IF	CITATIONS
1	Significantly decreased depolarization hydrostatic pressure of 3Dâ€printed PZT95/5 ceramics with periodically distributed pores. Journal of the American Ceramic Society, 2022, 105, 412-418.	3.8	5
2	Scalable fabrication of NiCo2O4/reduced graphene oxide composites by ultrasonic spray as binder-free electrodes for supercapacitors with ultralong lifetime. Journal of Materials Science and Technology, 2022, 99, 260-269.	10.7	56
3	Drug-loaded zeolite imidazole framework-8-functionalized bioglass scaffolds with antibacterial activity for bone repair. Ceramics International, 2022, 48, 6890-6898.	4.8	8
4	A distinctive semiconductor-metalloid heterojunction: unique electronic structure and enhanced CO2 photoreduction activity. Journal of Colloid and Interface Science, 2022, 615, 821-830.	9.4	9
5	A Bismuth Species-Decorated ZnO/p-Si Photocathode for High Selectivity of Formate in CO ₂ Photoelectrochemical Reduction. ACS Sustainable Chemistry and Engineering, 2022, 10, 2380-2387.	6.7	10
6	Crumpled graphene microspheres anchored on NiCo ₂ O ₄ nanoparticles as an advanced composite electrode for asymmetric supercapacitors with ultralong cycling life. Dalton Transactions, 2022, 51, 4491-4501.	3.3	9
7	The role of rare earth elements in bone tissue engineering scaffolds - A review. Composites Part B: Engineering, 2022, 235, 109758.	12.0	27
8	Bioceramic-based scaffolds with antibacterial function for bone tissue engineering: A review. Bioactive Materials, 2022, 18, 383-398.	15.6	49
9	Fe ₃ O ₄ nanoplates anchored on Ti ₃ C ₂ T _{<i>x</i>} MXene with enhanced pseudocapacitive and electrocatalytic properties. Nanoscale, 2021, 13, 15343-15351.	5.6	20
10	Mesoporous calcium silicate and titanium composite scaffolds via 3D-printing for improved properties in bone repair. Ceramics International, 2021, 47, 18905-18912.	4.8	4
11	Forsterite-hydroxyapatite composite scaffolds with photothermal antibacterial activity for bone repair. Journal of Advanced Ceramics, 2021, 10, 1095-1106.	17.4	15
12	Recent Advances in Biomaterial Scaffolds for Integrative Tumor Therapy and Bone Regeneration. Advanced Therapeutics, 2021, 4, 2000212.	3.2	15
13	3D printing of an integrated triphasic MBC-alginate scaffold with enhanced interface bonding for hard tissue applications. Journal of Materials Science: Materials in Medicine, 2020, 31, 113.	3.6	16
14	Fabrication of forsterite scaffolds with photothermal-induced antibacterial activity by 3D printing and polymer-derived ceramics strategy. Ceramics International, 2020, 46, 13607-13614.	4.8	18
15	Osteopontin sequence modified mesoporous calcium silicate scaffolds to promote angiogenesis in bone tissue regeneration. Journal of Materials Chemistry B, 2020, 8, 5849-5861.	5.8	18
16	Controllable Preparation and in Vitro Bioactivity of Bioglass Microspheres via Spray Drying Method. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2020, , 621.	1.3	2
17	3D printing of mesoporous bioactive glass/silk fibroin composite scaffolds for bone tissue engineering. Materials Science and Engineering C, 2019, 103, 109731.	7.3	116
18	3D-printed ternary SiO2CaO P2O5 bioglass-ceramic scaffolds with tunable compositions and properties for bone regeneration. Ceramics International, 2019, 45, 10997-11005.	4.8	21

Мім Zhu

	36
17.4	
	119
6.1	67
3.3	88
4.4	54
5.8	55
3.7	46
8.3	114
8.3	138
5.8	47
8.3	278
5.8	91
5.8	245
8.0	33
6.1	65
8.3	66
6.1	19
	 3.3 4.4 5.8 3.7 8.3 5.8 5.8 5.8 5.8 5.8 6.1 8.3