Min Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6617903/publications.pdf Version: 2024-02-01

Мім 7нц

#	Article	IF	CITATIONS
1	Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Acta Biomaterialia, 2014, 10, 2269-2281.	8.3	278
2	3D-printed magnetic Fe ₃ O ₄ /MBG/PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia. Journal of Materials Chemistry B, 2014, 2, 7583-7595.	5.8	245
3	Three-dimensional printed strontium-containing mesoporous bioactive glass scaffolds for repairing rat critical-sized calvarial defects. Acta Biomaterialia, 2015, 12, 270-280.	8.3	138
4	Organosilicon polymer-derived ceramics: An overview. Journal of Advanced Ceramics, 2019, 8, 457-478.	17.4	119
5	3D printing of mesoporous bioactive glass/silk fibroin composite scaffolds for bone tissue engineering. Materials Science and Engineering C, 2019, 103, 109731.	7.3	116
6	3D-printed hierarchical scaffold for localized isoniazid/rifampin drug delivery and osteoarticular tuberculosis therapy. Acta Biomaterialia, 2015, 16, 145-155.	8.3	114
7	Three dimensionally printed mesoporous bioactive glass and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) composite scaffolds for bone regeneration. Journal of Materials Chemistry B, 2014, 2, 6106.	5.8	91
8	Three dimensional printing of calcium sulfate and mesoporous bioactive glass scaffolds for improving bone regeneration in vitro and in vivo. Scientific Reports, 2017, 7, 42556.	3.3	88
9	3D-printed scaffolds of biomineralized hydroxyapatite nanocomposite on silk fibroin for improving bone regeneration. Applied Surface Science, 2019, 467-468, 345-353.	6.1	67
10	Substitutions of strontium in mesoporous calcium silicate and their physicochemical and biological properties. Acta Biomaterialia, 2013, 9, 6723-6731.	8.3	66
11	Preparation of chitosan/mesoporous silica nanoparticle composite hydrogels for sustained co-delivery of biomacromolecules and small chemical drugs. Science and Technology of Advanced Materials, 2013, 14, 045005.	6.1	65
12	Scalable fabrication of NiCo2O4/reduced graphene oxide composites by ultrasonic spray as binder-free electrodes for supercapacitors with ultralong lifetime. Journal of Materials Science and Technology, 2022, 99, 260-269.	10.7	56
13	Three-dimensional printing of tricalcium silicate/mesoporous bioactive glass cement scaffolds for bone regeneration. Journal of Materials Chemistry B, 2016, 4, 7452-7463.	5.8	55
14	The effect of calcium sulfate incorporation on physiochemical and biological properties of 3D-printed mesoporous calcium silicate cement scaffolds. Microporous and Mesoporous Materials, 2017, 241, 11-20.	4.4	54
15	Bioceramic-based scaffolds with antibacterial function for bone tissue engineering: A review. Bioactive Materials, 2022, 18, 383-398.	15.6	49
16	Effects of functional groups on the structure, physicochemical and biological properties of mesoporous bioactive glass scaffolds. Journal of Materials Chemistry B, 2015, 3, 1612-1623.	5.8	47
17	Three-dimensional printing of cerium-incorporated mesoporous calcium-silicate scaffolds for bone repair. Journal of Materials Science, 2016, 51, 836-844.	3.7	46
18	3D printing of layered mesoporous bioactive glass/sodium alginate-sodium alginate scaffolds with controllable dual-drug release behaviors. Biomedical Materials (Bristol), 2019, 14, 065011.	3.3	36

Мім Zhu

#	Article	IF	CITATIONS
19	Mesoporous Silica Nanoparticles/Hydroxyapatite Composite Coated Implants to Locally Inhibit Osteoclastic Activity. ACS Applied Materials & Interfaces, 2014, 6, 5456-5466.	8.0	33
20	The role of rare earth elements in bone tissue engineering scaffolds - A review. Composites Part B: Engineering, 2022, 235, 109758.	12.0	27
21	3D-printed ternary SiO2CaO P2O5 bioglass-ceramic scaffolds with tunable compositions and properties for bone regeneration. Ceramics International, 2019, 45, 10997-11005.	4.8	21
22	Fe ₃ O ₄ nanoplates anchored on Ti ₃ C ₂ T _{<i>x</i>} MXene with enhanced pseudocapacitive and electrocatalytic properties. Nanoscale, 2021, 13, 15343-15351.	5.6	20
23	Preparation and characterization of multifunctional magnetic mesoporous calcium silicate materials. Science and Technology of Advanced Materials, 2013, 14, 055009.	6.1	19
24	Fabrication of forsterite scaffolds with photothermal-induced antibacterial activity by 3D printing and polymer-derived ceramics strategy. Ceramics International, 2020, 46, 13607-13614.	4.8	18
25	Osteopontin sequence modified mesoporous calcium silicate scaffolds to promote angiogenesis in bone tissue regeneration. Journal of Materials Chemistry B, 2020, 8, 5849-5861.	5.8	18
26	3D printing of an integrated triphasic MBG-alginate scaffold with enhanced interface bonding for hard tissue applications. Journal of Materials Science: Materials in Medicine, 2020, 31, 113.	3.6	16
27	Forsterite-hydroxyapatite composite scaffolds with photothermal antibacterial activity for bone repair. Journal of Advanced Ceramics, 2021, 10, 1095-1106.	17.4	15
28	Recent Advances in Biomaterial Scaffolds for Integrative Tumor Therapy and Bone Regeneration. Advanced Therapeutics, 2021, 4, 2000212.	3.2	15
29	A Bismuth Species-Decorated ZnO/p-Si Photocathode for High Selectivity of Formate in CO ₂ Photoelectrochemical Reduction. ACS Sustainable Chemistry and Engineering, 2022, 10, 2380-2387.	6.7	10
30	A distinctive semiconductor-metalloid heterojunction: unique electronic structure and enhanced CO2 photoreduction activity. Journal of Colloid and Interface Science, 2022, 615, 821-830.	9.4	9
31	Crumpled graphene microspheres anchored on NiCo ₂ O ₄ nanoparticles as an advanced composite electrode for asymmetric supercapacitors with ultralong cycling life. Dalton Transactions, 2022, 51, 4491-4501.	3.3	9
32	Drug-loaded zeolite imidazole framework-8-functionalized bioglass scaffolds with antibacterial activity for bone repair. Ceramics International, 2022, 48, 6890-6898.	4.8	8
33	Significantly decreased depolarization hydrostatic pressure of 3Dâ€printed PZT95/5 ceramics with periodically distributed pores. Journal of the American Ceramic Society, 2022, 105, 412-418.	3.8	5
34	Mesoporous calcium silicate and titanium composite scaffolds via 3D-printing for improved properties in bone repair. Ceramics International, 2021, 47, 18905-18912.	4.8	4
35	Controllable Preparation and in Vitro Bioactivity of Bioglass Microspheres via Spray Drying Method. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2020, , 621.	1.3	2