Zhijian Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6617786/publications.pdf Version: 2024-02-01

		430874	414414
32	1,645	18	32
papers	citations	h-index	g-index
32	32	32	2599
all docs	docs citations	times ranked	citing authors

7HIIIAN CHEN

#	Article	IF	CITATIONS
1	The Dawn of Leadâ€Free Perovskite Solar Cell: Highly Stable Double Perovskite Cs ₂ AgBiBr ₆ Film. Advanced Science, 2018, 5, 1700759.	11.2	363
2	High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuO _x hole transport layer. Nanoscale, 2016, 8, 10806-10813.	5.6	206
3	Highly Efficient and Stable Selfâ€Powered Ultraviolet and Deepâ€Blue Photodetector Based on Cs ₂ AgBiBr ₆ /SnO ₂ Heterojunction. Advanced Optical Materials, 2018, 6, 1800811.	7.3	130
4	From Pb to Bi: A Promising Family of Pbâ€Free Optoelectronic Materials and Devices. Advanced Energy Materials, 2020, 10, 1902496.	19.5	108
5	FAPbI ₃ Flexible Solar Cells with a Record Efficiency of 19.38% Fabricated in Air via Ligand and Additive Synergetic Process. Advanced Functional Materials, 2019, 29, 1902974.	14.9	95
6	Improvement of Cs2AgBiBr6 double perovskite solar cell by rubidium doping. Organic Electronics, 2019, 74, 204-210.	2.6	84
7	A Deep-Blue Emitter with Electron Transporting Property to Improve Charge Balance for Organic Light-Emitting Device. ACS Applied Materials & Interfaces, 2012, 4, 2877-2880.	8.0	60
8	Recent progress in lead-free perovskite (-like) solar cells. Materials Today Energy, 2018, 8, 157-165.	4.7	60
9	High Efficiency (18.53%) of Flexible Perovskite Solar Cells via the Insertion of Potassium Chloride between SnO ₂ and CH ₃ NH ₃ PbI ₃ Layers. ACS Applied Energy Materials, 2019, 2, 3676-3682.	5.1	60
10	ZnO/SnO ₂ Double Electron Transport Layer Guides Improved Open Circuit Voltage for Highly Efficient CH ₃ NH ₃ Pbl ₃ -Based Planar Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 2215-2221.	5.1	59
11	Efficient and Stable Perovskite Solar Cell with High Open-Circuit Voltage by Dimensional Interface Modification. ACS Applied Materials & Interfaces, 2019, 11, 9149-9155.	8.0	54
12	Photovoltage Approaching 0.9 V for Planar Heterojunction Silver Bismuth Iodide Solar Cells with Li-TFSI Additive. ACS Applied Energy Materials, 2019, 2, 3651-3656.	5.1	51
13	Longâ€Lived and Highly Efficient TADFâ€PhOLED with "(A) _n –D–(A) _n ―Struct Terpyridine Electronâ€Transporting Material. Advanced Functional Materials, 2018, 28, 1800429.	ured 14.9	49
14	An ammonia modified PEDOT: PSS for interfacial engineering in inverted planar perovskite solar cells. Organic Electronics, 2017, 46, 22-27.	2.6	33
15	Enhancing the Photovoltaic Performance and Moisture Stability of Perovskite Solar Cells <i>Via</i> Polyfluoroalkylated Imidazolium Additives. ACS Applied Materials & Interfaces, 2021, 13, 4553-4559.	8.0	28
16	Positional isomerism effect of spirobifluorene and terpyridine moieties of "(A) _n –D–(A) _n ―type electron transport materials for long-lived and highly efficient TADF-PhOLEDs. Journal of Materials Chemistry C, 2018, 6, 10276-10283.	5.5	25
17	Efficient Nonlead Double Perovskite Solar Cell with Multiple Hole Transport Layers. ACS Applied Energy Materials, 2020, 3, 9594-9599.	5.1	23
18	Dopant-free Spiro-OMeTAD as hole transporting layer for stable and efficient perovskite solar cells. Organic Electronics, 2019, 74, 7-12.	2.6	22

Zhijian Chen

#	Article	IF	CITATIONS
19	TiO2/SnOxCly double layer for highly efficient planar perovskite solar cells. Organic Electronics, 2017, 50, 485-490.	2.6	17
20	To Greatly Reduce Defects via Photoannealing for High-Quality Perovskite Films. ACS Applied Materials & Interfaces, 2019, 11, 20943-20948.	8.0	14
21	lonic Liquid as an Additive for Two-Step Sequential Deposition for Air-Processed Efficient and Stable Carbon-Based CsPbI ₂ Br All-Inorganic Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 13444-13449.	5.1	13
22	High Crystallization of Perovskite Film by a Fast Electric Current Annealing Process. ACS Applied Materials & Interfaces, 2017, 9, 26915-26920.	8.0	11
23	Highly Efficient Perovskite Solar Cells with Neglectable Hysteresis and Increased Open Circuit Voltage via a Nickel Chloride Interface Modification. ACS Applied Energy Materials, 2019, 2, 5883-5888.	5.1	11
24	Glass rod-sliding and low pressure assisted solution processing composition engineering for high-efficiency perovskite solar cells. Solar Energy Materials and Solar Cells, 2020, 211, 110532.	6.2	11
25	Stable power output (PCE>19%) of planar perovskite solar cells with PbCl2 modification at the interface of SnO2/CH3NH3Pbl3. Organic Electronics, 2019, 74, 52-58.	2.6	10
26	Realizing High-Efficiency and Stable Perovskite Solar Cells via Double-Perovskite Nanocrystal Passivation. ACS Applied Energy Materials, 2022, 5, 1169-1174.	5.1	10
27	Increasing electron transporting properties and horizontal molecular orientation via meta-position of nitrogen for "(A)n–D–(A)n―structured terpyridine electron-transporting material. Journal of Materials Chemistry C, 2019, 7, 11581-11587.	5.5	9
28	Advances in Photoelectric Detection Units for Imaging Based on Perovskite Materials. Laser and Photonics Reviews, 2022, 16, .	8.7	9
29	Long-Persistent Luminescence from Double Self-Defect States in Undoped Cs3In2Cl9 Nanocrystals for Bioimaging and Display Technologies. ACS Applied Nano Materials, 2022, 5, 9469-9477.	5.0	9
30	A high thermal stability terpyridine derivative as the electron transporter for long-lived green phosphorescent OLED. Organic Electronics, 2021, 89, 106048.	2.6	8
31	The preparation method of double-blade coating to â€~write' high efficiency perovskite solar cells. Organic Electronics, 2022, 100, 106374	2.6	2
32	Spirobifluorene-based oligopyridine derivatives as electron-transporting materials for green phosphorescent organic light-emitting diodes. Organic Electronics, 2020, 77, 105498.	2.6	1