
David J Riese Ii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6617778/publications.pdf Version: 2024-02-01

DAVID | RIESE II

#	Article	IF	CITATIONS
1	The Yin and Yang of ERBB4: Tumor Suppressor and Oncoprotein. Pharmacological Reviews, 2022, 74, 18-47.	16.0	31
2	Abstract 814: Identification of ERBB4 mutant alleles that function as tumor drivers. , 2021, , .		0
3	The Role of the CXCL12/CXCR4/CXCR7 Chemokine Axis in Cancer. Frontiers in Pharmacology, 2020, 11, 574667.	3.5	143
4	Development and application of high-throughput screens for the discovery of compounds that disrupt ErbB4 signaling: Candidate cancer therapeutics. PLoS ONE, 2020, 15, e0243901.	2.5	3
5	Estrogen receptor-α, progesterone receptor, and c- <i>erb</i> B/HER-family receptor mRNA detection and phenotype analysis in spontaneous canine models of breast cancer. Journal of Veterinary Science, 2017, 18, 149.	1.3	14
6	Expression and purification of HER2 extracellular domain proteins in Schneider2 insect cells. Protein Expression and Purification, 2016, 125, 26-33.	1.3	3
7	Epiregulin: Roles in normal physiology and cancer. Seminars in Cell and Developmental Biology, 2014, 28, 49-56.	5.0	135
8	Autocrine-Derived Epidermal Growth Factor Receptor Ligands Contribute to Recruitment of Tumor-Associated Macrophage and Growth of Basal Breast Cancer Cells In Vivo. Oncology Research, 2013, 20, 303-317.	1.5	19
9	Multiple Functional Motifs Are Required for the Tumor Suppressor Activity of a Constitutively-Active ErbB4 Mutant. Journal of Cancer Research and Therapeutic Oncology, 2013, 1, 10.	0.0	3
10	The Q43L mutant of neuregulin 2β is a pan-ErbB receptor antagonist. Biochemical Journal, 2012, 443, 133-144.	3.7	7
11	EGFR ligands exhibit functional differences in models of paracrine and autocrine signaling. Growth Factors, 2012, 30, 107-116.	1.7	103
12	At the crossroads: EGFR and PTHrP signaling in cancer-mediated diseases of bone. Odontology / the Society of the Nippon Dental University, 2012, 100, 109-129.	1.9	14
13	Ligand stimulation of ErbB4 and a constitutively-active ErbB4 mutant result in different biological responses in human pancreatic tumor cell lines. Experimental Cell Research, 2011, 317, 392-404.	2.6	27
14	A high throughput, interactive imaging, brightâ€field wound healing assay. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2011, 79A, 227-232.	1.5	51
15	Ligand-based receptor tyrosine kinase partial agonists: new paradigm for cancer drug discovery?. Expert Opinion on Drug Discovery, 2011, 6, 185-193.	5.0	22
16	ErbB2 Is Necessary for ErbB4 Ligands to Stimulate Oncogenic Activities in Models of Human Breast Cancer. Genes and Cancer, 2011, 2, 792-804.	1.9	33
17	EGFR signaling in breast cancer: Bad to the bone. Seminars in Cell and Developmental Biology, 2010, 21, 951-960.	5.0	129
18	EGFR may couple moderate alcohol consumption to increased breast cancer risk. Breast Cancer: Targets and Therapy, 2009, 1, 31.	1.8	13

DAVID J RIESE II

#	Article	IF	CITATIONS
19	Lowe syndrome patient fibroblasts display Ocrl1-specific cell migration defects that cannot be rescued by the homologous Inpp5b phosphatase. Human Molecular Genetics, 2009, 18, 4478-4491.	2.9	49
20	Reconstitution of Amphiregulin–Epidermal Growth Factor Receptor Signaling in Lung Squamous Cell Carcinomas Activates PTHrP Gene Expression and Contributes to Cancer-Mediated Diseases of the Bone. Molecular Cancer Research, 2009, 7, 1714-1728.	3.4	18
21	Functional selectivity of EGF family peptide growth factors: Implications for cancer. , 2009, 122, 1-8.		225
22	Altered EGFR localization and degradation in human breast cancer cells with an amphiregulin/EGFR autocrine loop. Cellular Signalling, 2009, 21, 212-219.	3.6	64
23	Activation of ErbB3, EGFR and Erk is essential for growth of human breast cancer cell lines with acquired resistance to fulvestrant. Breast Cancer Research and Treatment, 2009, 114, 263-75.	2.5	129
24	Comparison of the enantiomers of (±)-doxanthrine, a high efficacy full dopamine D1 receptor agonist, and a reversal of enantioselectivity at D1 versus alpha2C adrenergic receptors. European Neuropsychopharmacology, 2009, 19, 138-146.	0.7	14
25	Amphiregulin-EGFR signaling regulates PTHrP gene expression in breast cancer cells. Breast Cancer Research and Treatment, 2008, 110, 493-505.	2.5	49
26	Modeling oncogene addiction using RNA interference. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12480-12484.	7.1	41
27	Oncogenic Activity of Epidermal Growth Factor Receptor Kinase Mutant Alleles Is Enhanced by the T790M Drug Resistance Mutation. Cancer Research, 2007, 67, 7319-7326.	0.9	136
28	Inter-conversion of neuregulin2 full and partial agonists for ErbB4. Biochemical and Biophysical Research Communications, 2007, 364, 351-357.	2.1	15
29	The antibody sc-33040-R fails to specifically recognize phosphorylation of ErbB4 on tyrosine1056. Growth Factors, 2007, 25, 329-333.	1.7	4
30	Mutational activation of ErbB family receptor tyrosine kinases: insights into mechanisms of signal transduction and tumorigenesis. BioEssays, 2007, 29, 558-565.	2.5	83
31	Phosphorylation of ErbB4 on Tyr1056 is critical for inhibition of colony formation by prostate tumor cell lines. Biochemical and Biophysical Research Communications, 2006, 349, 372-382.	2.1	26
32	The epidermal growth factor receptor (EGFR)-S442F mutant displays increased affinity for neuregulin-2l² and agonist-independent coupling with downstream signalling events. Biochemical Journal, 2006, 396, 79-88.	3.7	16
33	Phosphorylation of ErbB4 on Tyrosine 1056 Is Critical for ErbB4 Coupling to Inhibition of Colony Formation by Human Mammary Cell Lines. Oncology Research, 2006, 16, 179-193.	1.5	24
34	Phe45 of NRG2Î ² is critical for the affinity of NRG2Î ² for ErbB4 and for potent stimulation of ErbB4 signaling by NRG2Î ² . Growth Factors, 2005, 23, 273-283.	1.7	8
35	Anilinodialkoxyquinazolines:  Screening Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors for Potential Tumor Imaging Probes. Journal of Medicinal Chemistry, 2005, 48, 7445-7456.	6.4	33
36	Five carboxyl-terminal residues of neuregulin2 are critical for stimulation of signaling by the ErbB4 receptor tyrosine kinase. Oncogene, 2004, 23, 883-893.	5.9	28

DAVID J RIESE II

#	Article	IF	CITATIONS
37	secErbB4-26/549 Antagonizes Ligand-Induced ErbB4 Tyrosine Phosphorylation. Oncology Research, 2004, 14, 589-602.	1.5	13
38	A constitutively active ErbB4 mutant inhibits drug-resistant colony formation by the DU-145 and PC-3 human prostate tumor cell lines. Cancer Letters, 2003, 192, 67-74.	7.2	44
39	ErbB2 and ErbB3 do not quantitatively modulate ligand-induced ErbB4 tyrosine phosphorylation. Cellular Signalling, 2002, 14, 793-798.	3.6	17
40	Neuregulin isoforms exhibit distinct patterns of ErbB family receptor activation. Oncogene, 2002, 21, 8442-8452.	5.9	81
41	Constitutively active ErbB4 and ErbB2 mutants exhibit distinct biological activities. Cell Growth & Differentiation: the Molecular Biology Journal of the American Association for Cancer Research, 2002, 13, 247-56.	0.8	18
42	c-Cbl-dependent EphA2 protein degradation is induced by ligand binding. Molecular Cancer Research, 2002, 1, 79-87.	3.4	113
43	Design, Synthesis, and Biological Evaluation of a Series of Lavendustin A Analogues That Inhibit EGFR and Syk Tyrosine Kinases, as Well as Tubulin Polymerization. Journal of Medicinal Chemistry, 2001, 44, 441-452.	6.4	46
44	Ligand Discrimination in Signaling through an ErbB4 Receptor Homodimer. Journal of Biological Chemistry, 2000, 275, 19803-19807.	3.4	104
45	Specificity within the EGF family/ErbB receptor family signaling network. BioEssays, 1998, 20, 41-48.	2.5	695
46	Activation of ErbB4 by the Bifunctional Epidermal Growth Factor Family Hormone Epiregulin Is Regulated by ErbB2. Journal of Biological Chemistry, 1998, 273, 11288-11294.	3.4	91
47	Cripto Enhances the Tyrosine Phosphorylation of Shc and Activates Mitogen-activated Protein Kinase (MAPK) in Mammary Epithelial Cells. Journal of Biological Chemistry, 1997, 272, 3330-3335.	3.4	88
48	Ligands for ErbB-family receptors encoded by a neuregulin-like gene. Nature, 1997, 387, 509-512.	27.8	272
49	The Epidermal Growth Factor Receptor Couples Transforming Growth Factor-α, Heparin-binding Epidermal Growth Factor-like Factor, and Amphiregulin to Neu, ErbB-3, and ErbB-4. Journal of Biological Chemistry, 1996, 271, 20047-20052.	3.4	146
50	The Cellular Response to Neuregulins Is Governed by Complex Interactions of the erbB Receptor Family. Molecular and Cellular Biology, 1995, 15, 5770-5776.	2.3	364