
George Georgiou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6617645/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature, 2019, 569, 270-274.	13.7	1,528
2	Virus-Based Toolkit for the Directed Synthesis of Magnetic and Semiconducting Nanowires. Science, 2004, 303, 213-217.	6.0	946
3	Cysteine depletion induces pancreatic tumor ferroptosis in mice. Science, 2020, 368, 85-89.	6.0	692
4	Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature, 2014, 509, 55-62.	13.7	681
5	The promise and challenge of high-throughput sequencing of the antibody repertoire. Nature Biotechnology, 2014, 32, 158-168.	9.4	633
6	Radiotherapy and Immunotherapy Promote Tumoral Lipid Oxidation and Ferroptosis via Synergistic Repression of SLC7A11. Cancer Discovery, 2019, 9, 1673-1685.	7.7	566
7	Display of heterologous proteins on the surface of microorganisms: From the screening of combinatorial libraries to live recombinant vaccines. Nature Biotechnology, 1997, 15, 29-34.	9.4	488
8	Viral assembly of oriented quantum dot nanowires. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6946-6951.	3.3	468
9	Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nature Medicine, 2017, 23, 120-127.	15.2	413
10	Adhesion Forces between E. coli Bacteria and Biomaterial Surfaces. Langmuir, 1999, 15, 2719-2725.	1.6	411
11	High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire. Nature Biotechnology, 2013, 31, 166-169.	9.4	401
12	The Many Faces of Glutathione in Bacteria. Antioxidants and Redox Signaling, 2006, 8, 753-762.	2.5	385
13	In-depth determination and analysis of the human paired heavy- and light-chain antibody repertoire. Nature Medicine, 2015, 21, 86-91.	15.2	345
14	Monoclonal antibodies isolated without screening by analyzing the variable-gene repertoire of plasma cells. Nature Biotechnology, 2010, 28, 965-969.	9.4	299
15	Influenza Infection in Humans Induces Broadly Cross-Reactive and Protective Neuraminidase-Reactive Antibodies. Cell, 2018, 173, 417-429.e10.	13.5	295
16	The Bacterial Twin-Arginine Translocation Pathway. Annual Review of Microbiology, 2006, 60, 373-395.	2.9	294
17	Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6115-6120.	3.3	290
18	Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination. Nature Medicine, 2016, 22, 1456-1464.	15.2	271

#	Article	IF	CITATIONS
19	Identification and characterization of the constituent human serum antibodies elicited by vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2259-2264.	3.3	238
20	Prevalent, protective, and convergent IgG recognition of SARS-CoV-2 non-RBD spike epitopes. Science, 2021, 372, 1108-1112.	6.0	210
21	Antibody Engineering. Annual Review of Biomedical Engineering, 2000, 2, 339-376.	5.7	206
22	Isolation of engineered, full-length antibodies from libraries expressed in Escherichia coli. Nature Biotechnology, 2007, 25, 563-565.	9.4	206
23	Low CD21 expression defines a population of recent germinal center graduates primed for plasma cell differentiation. Science Immunology, 2017, 2, .	5.6	203
24	Surface–Active Compounds from Microorganisms. Nature Biotechnology, 1992, 10, 60-65.	9.4	202
25	Reversal of indoleamine 2,3-dioxygenase–mediated cancer immune suppression by systemic kynurenine depletion with a therapeutic enzyme. Nature Biotechnology, 2018, 36, 758-764.	9.4	201
26	Anchored periplasmic expression, a versatile technology for the isolation of high-affinity antibodies from Escherichia coli-expressed libraries. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9193-9198.	3.3	200
27	Structure and Morphology of Protein Inclusion Bodies in Escherichia Coli. Nature Biotechnology, 1991, 9, 725-730.	9.4	188
28	Preparative expression of secreted proteins in bacteria: status report and future prospects. Current Opinion in Biotechnology, 2005, 16, 538-545.	3.3	186
29	Identification of OmpT as the Protease That Hydrolyzes the Antimicrobial Peptide Protamine before It Enters Growing Cells of Escherichia coli. Journal of Bacteriology, 1998, 180, 4002-4006.	1.0	184
30	Large-scale sequence and structural comparisons of human naive and antigen-experienced antibody repertoires. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2636-45.	3.3	179
31	Synthesis and organization of nanoscale Il–VI semiconductor materials using evolved peptide specificity and viral capsid assembly. Journal of Materials Chemistry, 2003, 13, 2414-2421.	6.7	174
32	Systematic Analysis of Monoclonal Antibodies against Ebola Virus GP Defines Features that Contribute to Protection. Cell, 2018, 174, 938-952.e13.	13.5	173
33	Production of Correctly Folded Fab Antibody Fragment in the Cytoplasm of Escherichia coli trxB gor Mutants via the Coexpression of Molecular Chaperones. Protein Expression and Purification, 2001, 23, 338-347.	0.6	172
34	Function-based isolation of novel enzymes from a large library. Nature Biotechnology, 2000, 18, 1071-1074.	9.4	171
35	Structures of HIV-1 Env V1V2 with broadly neutralizing antibodies reveal commonalities that enable vaccine design. Nature Structural and Molecular Biology, 2016, 23, 81-90.	3.6	162
36	Strain engineering for improved expression of recombinant proteins in bacteria. Microbial Cell Factories, 2011, 10, 32.	1.9	160

#	Article	IF	CITATIONS
37	How to Flip the (Redox) Switch. Cell, 2002, 111, 607-610.	13.5	150
38	Aglycosylated IgG variants expressed in bacteria that selectively bind FcγRI potentiate tumor cell killing by monocyte-dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 604-609.	3.3	146
39	Phage Shock Protein PspA of Escherichia coli Relieves Saturation of Protein Export via the Tat Pathway. Journal of Bacteriology, 2004, 186, 366-373.	1.0	144
40	Engineering of protease variants exhibiting high catalytic activity and exquisite substrate selectivity. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6855-6860.	3.3	140
41	Ultra-high-throughput sequencing of the immune receptor repertoire from millions of lymphocytes. Nature Protocols, 2016, 11, 429-442.	5.5	140
42	Genetic Analysis of the Twin Arginine Translocator Secretion Pathway in Bacteria. Journal of Biological Chemistry, 2002, 277, 29825-29831.	1.6	133
43	Isolation and expression of recombinant antibody fragments to the biological warfare pathogen Brucella melitensis. Journal of Immunological Methods, 2003, 276, 185-196.	0.6	133
44	Why High-error-rate Random Mutagenesis Libraries are Enriched in Functional and Improved Proteins. Journal of Molecular Biology, 2005, 350, 806-816.	2.0	130
45	Revisiting the Role of Glycosylation in the Structure of Human IgG Fc. ACS Chemical Biology, 2012, 7, 1596-1602.	1.6	128
46	Molecular deconvolution of the monoclonal antibodies that comprise the polyclonal serum response. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2993-2998.	3.3	127
47	Isolation of high-affinity ligand-binding proteins by periplasmic expression with cytometric screening (PECS). Nature Biotechnology, 2001, 19, 537-542.	9.4	125
48	IgG Fc domains that bind C1q but not effector Fc^{3} receptors delineate the importance of complement-mediated effector functions. Nature Immunology, 2017, 18, 889-898.	7.0	122
49	Export Pathway Selectivity of Escherichia coli Twin Arginine Translocation Signal Peptides. Journal of Biological Chemistry, 2007, 282, 8309-8316.	1.6	120
50	Force Measurements between Bacteria and Poly(ethylene glycol)-Coated Surfaces. Langmuir, 2000, 16, 9155-9158.	1.6	119
51	Potent and broad HIV-neutralizing antibodies in memory B cells and plasma. Science Immunology, 2017, 2, .	5.6	119
52	Development of an optimized expression system for the screening of antibody libraries displayed on the Escherichia coli surface. Protein Engineering, Design and Selection, 1999, 12, 613-621.	1.0	117
53	Therapeutic enzyme deimmunization by combinatorial T-cell epitope removal using neutral drift. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1272-1277.	3.3	114
54	BIOCHEMISTRY: An Overoxidation Journey with a Return Ticket. Science, 2003, 300, 592-594.	6.0	113

#	Article	IF	CITATIONS
55	Functional interrogation and mining of natively paired human VH:VL antibody repertoires. Nature Biotechnology, 2018, 36, 152-155.	9.4	109
56	Plasmacytoid Dendritic Cells and Type I Interferon Promote Extrafollicular B Cell Responses to Extracellular Self-DNA. Immunity, 2020, 52, 1022-1038.e7.	6.6	109
57	Flow cytometric screening of cell-based libraries. Journal of Immunological Methods, 2000, 243, 211-227.	0.6	106
58	Replacing Mn ²⁺ with Co ²⁺ in Human Arginase I Enhances Cytotoxicity toward <scp>l</scp> -Arginine Auxotrophic Cancer Cell Lines. ACS Chemical Biology, 2010, 5, 333-342.	1.6	105
59	Engineering of TEV protease variants by yeast ER sequestration screening (YESS) of combinatorial libraries. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7229-7234.	3.3	105
60	Cell-Surface display of heterologous proteins: From high-throughput screening to environmental applications. Biotechnology and Bioengineering, 2002, 79, 496-503.	1.7	104
61	Influenza immunization elicits antibodies specific for an egg-adapted vaccine strain. Nature Medicine, 2016, 22, 1465-1469.	15.2	104
62	Effects of codon usage versus putative 5′-mRNA structure on the expression of Fusarium solani cutinase in the Escherichia coli cytoplasm. Protein Expression and Purification, 2003, 27, 134-142.	0.6	94
63	Persistent Antibody Clonotypes Dominate the Serum Response to Influenza over Multiple Years and Repeated Vaccinations. Cell Host and Microbe, 2019, 25, 367-376.e5.	5.1	93
64	Display of β-lactamase on the Escherichia coli surface: outer membrane phenotypes conferred by Lpp′–OmpA′–β-lactamase fusions. Protein Engineering, Design and Selection, 1996, 9, 239-247.	1.0	92
65	Bypassing glycosylation: engineering aglycosylated full-length IgG antibodies for human therapy. Current Opinion in Biotechnology, 2011, 22, 858-867.	3.3	88
66	Mineralization of biphenyl and PCBs by the white rot fungusPhanerochaete chrysosporium. Biotechnology and Bioengineering, 1992, 40, 1395-1402.	1.7	86
67	Increased cathepsin S in Prdm1â^'/â^' dendritic cells alters the TFH cell repertoire and contributes to lupus. Nature Immunology, 2017, 18, 1016-1024.	7.0	86
68	Substrate Specificity of the Escherichia coli Outer Membrane Protease OmpT. Journal of Bacteriology, 2004, 186, 5919-5925.	1.0	85
69	Antibody Fc engineering improves frequency and promotes kinetic boosting of serial killing mediated by NK cells. Blood, 2014, 124, 3241-3249.	0.6	85
70	Highly active and selective endopeptidases with programmed substrate specificities. Nature Chemical Biology, 2008, 4, 290-294.	3.9	82
71	Optimizing the production of recombinant proteins in microorganisms. AICHE Journal, 1988, 34, 1233-1248.	1.8	81
72	Serology in the 21st century: the molecular-level analysis of the serum antibody repertoire. Current Opinion in Immunology, 2015, 35, 89-97.	2.4	80

5

#	Article	IF	CITATIONS
73	Specific Adhesion and Hydrolysis of Cellulose by Intact Escherichia coli Expressing Surface Anchored Cellulase or Cellulose Binding Domains. Nature Biotechnology, 1993, 11, 491-495.	9.4	79
74	Molecular characterization of .betalactamase inclusion bodies produced in Escherichia coli. 1. Composition. Biotechnology Progress, 1993, 9, 539-547.	1.3	79
75	Comprehensive engineering of Escherichia coli for enhanced expression of IgG antibodies. Metabolic Engineering, 2011, 13, 241-251.	3.6	79
76	Fine-tuning citrate synthase flux potentiates and refines metabolic innovation in the Lenski evolution experiment. ELife, 2015, 4, .	2.8	79
77	Antibody Repertoires in Humanized NOD-scid-IL2RÎ ³ null Mice and Human B Cells Reveals Human-Like Diversification and Tolerance Checkpoints in the Mouse. PLoS ONE, 2012, 7, e35497.	1.1	77
78	Longitudinal Analysis Reveals Early Development of Three MPER-Directed Neutralizing Antibody Lineages from an HIV-1-Infected Individual. Immunity, 2019, 50, 677-691.e13.	6.6	77
79	Next-generation sequencing and protein mass spectrometry for the comprehensive analysis of human cellular and serum antibody repertoires. Current Opinion in Chemical Biology, 2015, 24, 112-120.	2.8	76
80	Sera Antibody Repertoire Analyses Reveal Mechanisms of Broad and Pandemic Strain Neutralizing Responses after Human Norovirus Vaccination. Immunity, 2019, 50, 1530-1541.e8.	6.6	71
81	Folding and aggregation of TEM Î²â€łactamase: Analogies with the formation of inclusion bodies in <i>Escherichia coli</i> . Protein Science, 1994, 3, 1953-1960.	3.1	70
82	Proteomic Identification of Monoclonal Antibodies from Serum. Analytical Chemistry, 2014, 86, 4758-4766.	3.2	69
83	Differences in the Composition of the Human Antibody Repertoire by B Cell Subsets in the Blood. Frontiers in Immunology, 2014, 5, 96.	2.2	62
84	Evaluating the interaction of bacteria with biomaterials using atomic force microscopy. Journal of Biomaterials Science, Polymer Edition, 1998, 9, 1361-1373.	1.9	61
85	In vitro scanning saturation mutagenesis of all the specificity determining residues in an antibody binding site. Protein Engineering, Design and Selection, 1999, 12, 349-356.	1.0	61
86	Efficient production of membraneâ€integrated and detergentâ€soluble G proteinâ€coupled receptors in <i>Escherichia coli</i> . Protein Science, 2008, 17, 1857-1863.	3.1	61
87	Effective Phagocytosis of Low Her2 Tumor Cell Lines with Engineered, Aglycosylated IgG Displaying High Fcl̂3Rlla Affinity and Selectivity. ACS Chemical Biology, 2013, 8, 368-375.	1.6	61
88	Systematic Characterization and Comparative Analysis of the Rabbit Immunoglobulin Repertoire. PLoS ONE, 2014, 9, e101322.	1.1	61
89	Immunoglobulin isotype knowledge and application to Fc engineering. Current Opinion in Immunology, 2016, 40, 62-69.	2.4	61
90	Synthetic Antibody Libraries Focused Towards Peptide Ligands. Journal of Molecular Biology, 2008, 378, 622-633.	2.0	60

#	Article	IF	CITATIONS
91	High-throughput antibody isolation. Current Opinion in Chemical Biology, 2001, 5, 683-689.	2.8	58
92	Enhanced crossover SCRATCHY: construction and high-throughput screening of a combinatorial library containing multiple non-homologous crossovers. Nucleic Acids Research, 2003, 31, 126e-126.	6.5	57
93	IgGA: A "Cross-Isotype―Engineered Human Fc Antibody Domain that Displays Both IgG-like and IgA-like Effector Functions. Chemistry and Biology, 2014, 21, 1603-1609.	6.2	55
94	Evolution of highly active enzymes by homology-independent recombination. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10082-10087.	3.3	54
95	Production and deactivation of biosurfactant by Bacillus licheniformis JF-2. Biotechnology Progress, 1993, 9, 138-145.	1.3	53
96	Effect of Sequences of the Active-Site Dipeptides of DsbA and DsbC on In Vivo Folding of Multidisulfide Proteins in Escherichia coli. Journal of Bacteriology, 2001, 183, 980-988.	1.0	52
97	SCHEMA-Designed Variants of Human Arginase I and II Reveal Sequence Elements Important to Stability and Catalysis. ACS Synthetic Biology, 2012, 1, 221-228.	1.9	52
98	Analysis of large libraries of protein mutants using flow cytometry. Advances in Protein Chemistry, 2001, 55, 293-315.	4.4	51
99	An engineered human Fc domain that behaves like a pH-toggle switch for ultra-long circulation persistence. Nature Communications, 2019, 10, 5031.	5.8	49
100	Substrate Specificity of the Escherichia coli Outer Membrane Protease OmpP. Journal of Bacteriology, 2007, 189, 522-530.	1.0	48
101	APEx 2-hybrid, a quantitative protein-protein interaction assay for antibody discovery and engineering. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8247-8252.	3.3	48
102	Escherichia coli tatC Mutations that Suppress Defective Twin-Arginine Transporter Signal Peptides. Journal of Molecular Biology, 2007, 374, 283-291.	2.0	47
103	Facile Discovery of a Diverse Panel of Anti-Ebola Virus Antibodies by Immune Repertoire Mining. Scientific Reports, 2015, 5, 13926.	1.6	47
104	Tryptophan depletion results in tryptophan-to-phenylalanine substitutants. Nature, 2022, 603, 721-727.	13.7	47
105	Transport of bacteria in porous media: I. An experimental investigation. Biotechnology and Bioengineering, 1994, 44, 489-497.	1.7	46
106	Engineered DsbC chimeras catalyze both protein oxidation and disulfide-bond isomerization in Escherichia coli: Reconciling two competing pathways. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10018-10023.	3.3	46
107	E-clonal antibodies: selection of full-length IgG antibodies using bacterial periplasmic display. Nature Protocols, 2008, 3, 1766-1777.	5.5	46
108	Beyond toothpicks: new methods for isolating mutant bacteria. Nature Reviews Microbiology, 2007, 5, 680-688.	13.6	45

#	Article	IF	CITATIONS
109	Engineering next generation proteases. Current Opinion in Biotechnology, 2009, 20, 390-397.	3.3	43
110	Rapid Amperometric Verification of PCR Amplification of DNA. Analytical Chemistry, 1999, 71, 535-538.	3.2	42
111	Genetic analysis of G proteinâ€coupled receptor expression in <i>Escherichia coli</i> : Inhibitory role of DnaJ on the membrane integration of the human central cannabinoid receptor. Biotechnology and Bioengineering, 2009, 102, 357-367.	1.7	42
112	Identification of tumor-reactive B cells and systemic IgG in breast cancer based on clonal frequency in the sentinel lymph node. Cancer Immunology, Immunotherapy, 2018, 67, 729-738.	2.0	42
113	Determinants governing T cell receptor α/β-chain pairing in repertoire formation of identical twins. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 532-540.	3.3	42
114	The Effect of Sugars on Î²â€Łactamase Aggregation in <i>Escherichia coli</i> . Biotechnology Progress, 1988, 4, 97-101.	1.3	40
115	Functional plasticity of a peroxidase allows evolution of diverse disulfide-reducing pathways. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6735-6740.	3.3	40
116	Selection of fullâ€length IgGs by tandem display on filamentous phage particles and <i>Escherichiaâ€fcoli</i> fluorescenceâ€activated cell sorting screening. FEBS Journal, 2010, 277, 2291-2303.	2.2	40
117	Simple Genetic Selection Protocol for Isolation of Overexpressed Genes That Enhance Accumulation of Membrane-Integrated Human G Protein-Coupled Receptors in <i>Escherichia coli</i> . Applied and Environmental Microbiology, 2010, 76, 5852-5859.	1.4	40
118	Human recombinant arginase enzyme reduces plasma arginine in mouse models of arginase deficiency. Human Molecular Genetics, 2015, 24, 6417-6427.	1.4	40
119	Inclusion Bodies and Recovery of Proteins from the Aggregated State. ACS Symposium Series, 1991, , 1-20.	0.5	37
120	A Periplasmic Fluorescent Reporter Protein and its Application in High-throughput Membrane Protein Topology Analysis. Journal of Molecular Biology, 2004, 341, 901-909.	2.0	36
121	Subtype-specific addiction of the activated B-cell subset of diffuse large B-cell lymphoma to FOXP1. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E577-E586.	3.3	36
122	A scFv Antibody Mutant Isolated in a Genetic Screen for Improved Export via the Twin Arginine Transporter Pathway Exhibits Faster Folding. Journal of Molecular Biology, 2007, 369, 631-639.	2.0	35
123	Binding and enrichment of <i>Escherichia coli</i> spheroplasts expressing inner membrane tethered scFv antibodies on surface immobilized antigens. Biotechnology and Bioengineering, 2007, 98, 39-47.	1.7	34
124	Substrate specificity of human kallikreins 1 and 6 determined by phage display. Protein Science, 2008, 17, 664-672.	3.1	34
125	Optimization of growth conditions for the production of proteolytically-sensitive proteins in the periplasmic space of Escherichia coli. Applied Microbiology and Biotechnology, 1991, 36, 14-20.	1.7	32
126	Transport of bacteria in porous media: II. A model for convective Transport and growth. Biotechnology and Bioengineering, 1994, 44, 499-508.	1.7	32

#	Article	IF	CITATIONS
127	Secretory Production of Recombinant Protein by a High Cell Density Culture of a Protease Negative Mutant Escherichia coli Strain. Biotechnology Progress, 1999, 15, 164-167.	1.3	32
128	Rapid construction and characterization of synthetic antibody libraries without DNA amplification. Biotechnology and Bioengineering, 2010, 106, 347-357.	1.7	30
129	Profiling Protease Specificity: Combining Yeast ER Sequestration Screening (YESS) with Next Generation Sequencing. ACS Chemical Biology, 2017, 12, 510-518.	1.6	30
130	Engineering of recombinant antibody fragments to methamphetamine by anchored periplasmic expression. Journal of Immunological Methods, 2006, 308, 43-52.	0.6	29
131	Discovery of high affinity anti-ricin antibodies by B cell receptor sequencing and by yeast display of combinatorial V _H :V _L libraries from immunized animals. MAbs, 2016, 8, 1035-1044.	2.6	29
132	Facilitating the Formation of Disulfide Bonds in the Escherichia coli Periplasm via Coexpression of Yeast Protein Disulfide Isomerase. Biotechnology Progress, 1999, 15, 1033-1038.	1.3	28
133	Enzyme-mediated depletion of l-cyst(e)ine synergizes with thioredoxin reductase inhibition for suppression of pancreatic tumor growth. Npj Precision Oncology, 2019, 3, 16.	2.3	28
134	Demonstration of efficient trichloroethylene biodegradation in a hollow-fiber membrane bioreactor. , 1999, 62, 681-692.		27
135	A bacterial two-hybrid system based on the twin-arginine transporter pathway ofE. coli. Protein Science, 2007, 16, 1001-1008.	3.1	27
136	Enzyme-mediated depletion of serum <scp>l</scp> -Met abrogates prostate cancer growth via multiple mechanisms without evidence of systemic toxicity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13000-13011.	3.3	27
137	Multi-copy genes that enhance the yield of mammalian G protein-coupled receptors in Escherichia coli. Metabolic Engineering, 2012, 14, 591-602.	3.6	26
138	Directed Evolution of Highly Selective Proteases by Using a Novel FACSâ€Based Screen that Capitalizes on the p53 Regulator MDM2. ChemBioChem, 2012, 13, 649-653.	1.3	26
139	A hollow-fiber membrane bioreactor for the removal of trichloroethylene from the vapor phase. , 2000, 68, 548-556.		25
140	An Engineered Protease that Cleaves Specifically after Sulfated Tyrosine. Angewandte Chemie - International Edition, 2008, 47, 7861-7863.	7.2	25
141	Expression of active human sialyltransferase ST6GalNAcI in Escherichia coli. Microbial Cell Factories, 2009, 8, 50.	1.9	25
142	Systems analysis of adaptive immunity by utilization of high-throughput technologies. Current Opinion in Biotechnology, 2011, 22, 584-589.	3.3	25
143	Engineering antibody fragments to fold in the absence of disulfide bonds. Protein Science, 2009, 18, 259-267.	3.1	24
144	Construction and flow cytometric screening of targeted enzyme libraries. Nature Protocols, 2009, 4, 893-901.	5.5	24

#	Article	IF	CITATIONS
145	YESS 2.0, a Tunable Platform for Enzyme Evolution, Yields Highly Active TEV Protease Variants. ACS Synthetic Biology, 2021, 10, 63-71.	1.9	24
146	Strategies for optimizing the serum persistence of engineered human arginase I for cancer therapy. Journal of Controlled Release, 2012, 158, 171-179.	4.8	23
147	An Alternate Pathway of Arsenate Resistance in <i>E. coli</i> Mediated by the Glutathione S-Transferase GstB. ACS Chemical Biology, 2015, 10, 875-882.	1.6	20
148	Improving Antibody Therapeutics by Manipulating the Fc Domain: Immunological and Structural Considerations. Annual Review of Biomedical Engineering, 2022, 24, 249-274.	5.7	20
149	A Quantitative Immunoassay Utilizing Escherichia coli Cells Possessing Surface-Expressed Single Chain Fv Molecules. Biotechnology Progress, 1996, 12, 572-574.	1.3	18
150	A facile technology for the high-throughput sequencing of the paired VH:VL and TCRβ:TCRα repertoires. Science Advances, 2020, 6, eaay9093.	4.7	18
151	Degradation of Secreted Proteins in Escherichia coli. Annals of the New York Academy of Sciences, 1992, 665, 301-308.	1.8	17
152	Assembly of multimeric phage nanostructures through leucine zipper interactions. Biotechnology and Bioengineering, 2006, 95, 539-545.	1.7	17
153	An Engineered Human Fc variant With Exquisite Selectivity for FcÎ ³ RIIIaV158 Reveals That Ligation of FcÎ ³ RIIIa Mediates Potent Antibody Dependent Cellular Phagocytosis With GM-CSF-Differentiated Macrophages. Frontiers in Immunology, 2019, 10, 562.	2.2	17
154	A Prevalent Focused Human Antibody Response to the Influenza Virus Hemagglutinin Head Interface. MBio, 2021, 12, e0114421.	1.8	17
155	De Novo Design and Evolution of Artificial Disulfide Isomerase Enzymes Analogous to the Bacterial DsbC. Journal of Biological Chemistry, 2008, 283, 31469-31476.	1.6	16
156	A missense mutation inASRGL1is involved in causing autosomal recessive retinal degeneration. Human Molecular Genetics, 2016, 25, ddw113.	1.4	16
157	Tumor-associated myeloid cells provide critical support for T-ALL. Blood, 2020, 136, 1837-1850.	0.6	16
158	Effect of alkaline medium on the production and excretion of B-lactamase byEscherichia coli. Biotechnology Letters, 1988, 10, 377-382.	1.1	15
159	Efficient expression and purification of human aglycosylated FcÎ ³ receptors in <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2010, 107, 21-30.	1.7	15
160	Computational and Functional Analysis of the Virus-Receptor Interface Reveals Host Range Trade-Offs in New World Arenaviruses. Journal of Virology, 2015, 89, 11643-11653.	1.5	15
161	Advances and challenges in membrane protein expression. AICHE Journal, 2007, 53, 752-756.	1.8	14
162	Laboratory Evolution of Escherichia coli Thioredoxin for Enhanced Catalysis of Protein Oxidation in the Periplasm Reveals a Phylogenetically Conserved Substrate Specificity Determinant. Journal of Biological Chemistry, 2008, 283, 840-848.	1.6	14

#	Article	IF	CITATIONS
163	Proteases That Can Distinguish among Different Post-translational Forms of Tyrosine Engineered Using Multicolor Flow Cytometry. Journal of the American Chemical Society, 2009, 131, 18186-18190.	6.6	14
164	Yeast Endoplasmic Reticulum Sequestration Screening for the Engineering of Proteases from Libraries Expressed in Yeast. Methods in Molecular Biology, 2015, 1319, 81-93.	0.4	14
165	Leveraging intrinsic flexibility to engineer enhanced enzyme catalytic activity. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	14
166	Screening of large protein libraries by the ?cell immobilized on adsorbed bead? approach. Biotechnology and Bioengineering, 2004, 86, 196-200.	1.7	13
167	Middle-Down 193-nm Ultraviolet Photodissociation for Unambiguous Antibody Identification and its Implications for Immunoproteomic Analysis. Analytical Chemistry, 2017, 89, 6498-6504.	3.2	13
168	Hypersensitivity to ferroptosis in chromophobe RCC is mediated by a glutathione metabolic dependency and cystine import via solute carrier family 7 member 11. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	13
169	Genetic Analysis of Disulfide Isomerization in Escherichia coli : Expression of DsbC Is Modulated by RNase E-Dependent mRNA Processing. Journal of Bacteriology, 2004, 186, 654-660.	1.0	12
170	Computerâ€based engineering of thermostabilized antibody fragments. AICHE Journal, 2020, 66, e16864.	1.8	12
171	Influenza vaccination in the elderly boosts antibodies against conserved viral proteins and egg-produced glycans. Journal of Clinical Investigation, 2021, 131, .	3.9	12
172	Temporal stability and molecular persistence of the bone marrow plasma cell antibody repertoire. Nature Communications, 2016, 7, 13838.	5.8	11
173	Sequencing HIV-neutralizing antibody exons and introns reveals detailed aspects of lineage maturation. Nature Communications, 2018, 9, 4136.	5.8	11
174	Fixation and stabilization of Escherichia coli cells displaying genetically engineered cell surface proteins. , 2000, 52, 625-630.		10
175	Fixation and stabilization of Escherichia coli cells displaying genetically engineered cell surface proteins. , 1996, 52, 625.		10
176	Enrichment of Escherichia coli spheroplasts displaying scFv antibodies specific for antigens expressed on the human cell surface. Applied Microbiology and Biotechnology, 2010, 88, 1385-1391.	1.7	9
177	Rapid Screen for Tyrosine Kinase Inhibitor Resistance Mutations and Substrate Specificity. ACS Chemical Biology, 2019, 14, 1888-1895.	1.6	8
178	Combinatorial Approaches to Enhance DNA Damage following Enzyme-Mediated Depletion of L-Cys for Treatment of Pancreatic Cancer. Molecular Therapy, 2021, 29, 775-787.	3.7	8
179	Folding and Aggregation of RTEM \hat{I}^2 -Lactamase. ACS Symposium Series, 1991, , 97-109.	0.5	7
180	Site-protected fixation and immobilization ofEscherichia coli cells displaying surface-anchored		7

?-lactamase. , 1999, 62, 155-159.

#	Article	IF	CITATIONS
181	A biocatalyst for the removal of sulfite from alcoholic beverages. Biotechnology and Bioengineering, 2005, 89, 123-127.	1.7	6
182	Conformational Dynamics Contribute to Substrate Selectivity and Catalysis in Human Kynureninase. ACS Chemical Biology, 2020, 15, 3159-3166.	1.6	6
183	Disulfide stabilization of human norovirus GI.1 virus-like particles focuses immune response toward blockade epitopes. Npj Vaccines, 2020, 5, 110.	2.9	6
184	Characterization and Refolding of \hat{l}^2 -Lactamase Inclusion Bodies in <i>Escherichia coli</i> . ACS Symposium Series, 1993, , 126-139.	0.5	5
185	Proteins from PHB granules. Protein Science, 2009, 14, 1385-1386.	3.1	4
186	Antibody-mediates inhibition of human C1s and the classical complement pathway. Immunobiology, 2013, 218, 1041-1048.	0.8	4
187	Handmade microfluidic device for biochemical applications in emulsion. Journal of Bioscience and Bioengineering, 2016, 121, 471-476.	1.1	3
188	Mapping the secrets of the antibody pool. Nature Biotechnology, 2017, 35, 921-922.	9.4	3
189	IgG Immune Complexes Inhibit NaÃ ⁻ ve T Cell Proliferation and Suppress Effector Function in Cytotoxic T Cells. Frontiers in Immunology, 2021, 12, 713704.	2.2	3
190	Demonstration of efficient trichloroethylene biodegradation in a hollow-fiber membrane bioreactor. , 1999, 64, 630-630.		2
191	Mechanistic Challenges and Engineering Applications of Protein Export in E. coli. , 2009, , 327-349.		2
192	Engineering Anti-AML Antibodies for Improved NK Cell ADCC. Blood, 2012, 120, 3629-3629.	0.6	2
193	GFP Reporter Screens for the Engineering of Amino Acid Degrading Enzymes from Libraries Expressed in Bacteria. Methods in Molecular Biology, 2013, 978, 31-44.	0.4	1
194	High-affinity IgA against microbial glycans. Nature Immunology, 2018, 19, 514-515.	7.0	1
195	The Problem of Expression of Multidisulfide Bonded Recombinant Proteins in E. coli. , 2011, , 183-215.		0
196	Dynamics of Lâ€Kynureninase Orthologs during Catalysis. FASEB Journal, 2018, 32, 527.13.	0.2	0