
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6617489/publications.pdf Version: 2024-02-01

8

#	Article	IF	CITATIONS
1	Effect of liquid addition on the bulk and flow properties of cohesive powders. Particulate Science and Technology, 2022, 40, 141-150.	1.1	2
2	Residence time distribution as a traceability method for lot changes in a pharmaceutical continuous manufacturing system. International Journal of Pharmaceutics, 2022, 611, 121313.	2.6	2
3	SEM/EDX and Raman chemical imaging of pharmaceutical tablets: A comparison of tablet surface preparation and analysis methods. International Journal of Pharmaceutics, 2022, 611, 121331.	2.6	7
4	Prediction of entire tablet formulations from pure powder components' spectra via a two-step non-linear optimization methodology. International Journal of Pharmaceutics, 2022, 615, 121472.	2.6	1
5	Characterization of material properties. , 2022, , 9-28.		1
6	Outlook—what comes next in continuous manufacturing (andÂin advanced pharmaceutical) Tj ETQq0 0 0 rgB1	- /Overlock	2 18 Tf 50 54
7	Loss-in-weight feeding. , 2022, , 29-57.		1
8	Continuous powder mixing and lubrication. , 2022, , 59-92.		0
9	Improving Feedability of Highly Adhesive Active Pharmaceutical Ingredients by Silication. Journal of Pharmaceutical Innovation, 2021, 16, 279-292.	1.1	6
10	Sampling optimization for blend monitoring of a low dose formulation in a tablet press feed frame using spatially resolved near-infrared spectroscopy. International Journal of Pharmaceutics, 2021, 602, 120594.	2.6	9
11	Integrating sensors for monitoring blend content in a pharmaceutical continuous manufacturing	9.6	0

11	plant. International Journal of Pharmaceutics, 2021, 606, 120085.	2.0	J	
12	Binder-free twin-screw melt granulation: An effective approach to manufacture high-dose API formulations. International Journal of Pharmaceutics, 2021, 606, 120886.	2.6	4	
13	Performance assessment of linear iterative optimization technology (IOT) for Raman chemical mapping of pharmaceutical tablets. Journal of Pharmaceutical and Biomedical Analysis, 2021, 205, 114305.	1.4	6	
14	Using residence time distribution in pharmaceutical solid dose manufacturing – A critical review.	0.6		

14	International Journal of Pharmaceutics, 2021, 610, 121248.	2.6	11
15	Dissolution Study on Grape Polyphenol Hard Gelatin Capsule Dietary Supplements. Frontiers in Nutrition, 2021, 8, 780260.	1.6	4
16	Identifying a Loss-in-Weight Feeder Design Space Based on Performance and Material Properties. Journal of Pharmaceutical Innovation, 2020, 15, 482-495.	1.1	10
17	Prediction of tablet weight variability in continuous manufacturing. International Journal of Pharmaceutics, 2020, 575, 118727.	2.6	12

18Method transfer of a near-infrared spectroscopic method for blend uniformity in a poorly flowing
and hygroscopic blend. Journal of Pharmaceutical and Biomedical Analysis, 2020, 180, 113054.1.4

#	Article	IF	CITATIONS
19	Characterization of NIR interfaces for the feeding and in-line monitoring of a continuous granulation process. International Journal of Pharmaceutics, 2020, 574, 118848.	2.6	12
20	A "Large-N―Content Uniformity Process Analytical Technology (PAT) Method for Phenytoin Sodium Tablets. Journal of Pharmaceutical Sciences, 2019, 108, 494-505.	1.6	12
21	Mixing Cell: a Device to Mimic Extent of Lubrication and Shear in Continuous Tubular Blenders. AAPS PharmSciTech, 2019, 20, 262.	1.5	1
22	Continuous high-shear granulation: Mechanistic understanding of the influence of process parameters on critical quality attributes via elucidating the internal physical and chemical microstructure. Advanced Powder Technology, 2019, 30, 1765-1781.	2.0	7
23	Prediction of dissolution profiles by non-destructive NIR spectroscopy in bilayer tablets. International Journal of Pharmaceutics, 2019, 565, 419-436.	2.6	22
24	Modeling fluidized bed impregnation of active pharmaceutical ingredients onto porous excipients. Chemical Engineering Science, 2019, 202, 36-54.	1.9	1
25	Advanced process design and understanding of continuous twin-screw granulation via implementation of in-line process analytical technologies. Advanced Powder Technology, 2019, 30, 879-894.	2.0	34
26	Assessment of blend uniformity in a continuous tablet manufacturing process. International Journal of Pharmaceutics, 2019, 560, 322-333.	2.6	52
27	A comprehensive analysis and optimization of continuous twin-screw granulation processes via sequential experimentation strategy. International Journal of Pharmaceutics, 2019, 556, 349-362.	2.6	20
28	Effect of material properties on the residence time distribution (RTD) characterization of powder blending unit operations. Part II of II: Application of models. Powder Technology, 2019, 344, 525-544.	2.1	31
29	Effect of tracer material properties on the residence time distribution (RTD) of continuous powder blending operations. Part I of II: Experimental evaluation. Powder Technology, 2019, 342, 744-763.	2.1	56
30	Combined Feedforward/Feedback Control of an Integrated Continuous Granulation Process. Journal of Pharmaceutical Innovation, 2019, 14, 259-285.	1.1	10
31	Manufacturing of Pharmaceuticals by Impregnation of an Active Pharmaceutical Ingredient onto a Mesoporous Carrier: Impact of Solvent and Loading. Journal of Pharmaceutical Innovation, 2019, 14, 194-205.	1.1	3
32	Cross-sectional analysis of impregnated excipient particles by energy dispersive X-ray spectroscopy. Powder Technology, 2018, 332, 197-209.	2.1	2
33	A Training on: Continuous Manufacturing (Direct Compaction) of Solid Dose Pharmaceutical Products. Journal of Pharmaceutical Innovation, 2018, 13, 155-187.	1.1	22
34	A drop penetration method to measure powder blend wettability. International Journal of Pharmaceutics, 2018, 538, 112-118.	2.6	13
35	Modeling the effects of material properties on tablet compaction: A building block for controlling both batch and continuous pharmaceutical manufacturing processes. International Journal of Pharmaceutics, 2018, 543, 274-287.	2.6	27
36	Measurement of the residence time distribution of a cohesive powder in a flighted rotary kiln. Chemical Engineering Science, 2018, 191, 56-66.	1.9	7

#	Article	IF	CITATIONS
37	Using a material property library to find surrogate materials for pharmaceutical process development. Powder Technology, 2018, 339, 659-676.	2.1	47
38	Effects of Process and Design Parameters on Granule Size Distribution in a Continuous High Shear Granulation Process. Journal of Pharmaceutical Innovation, 2017, 12, 283-295.	1.1	10
39	Analysis of the origins of content non-uniformity in high-shear wet granulation. International Journal of Pharmaceutics, 2017, 528, 578-585.	2.6	32
40	Capillary Drop Penetration Method to Characterize the Liquid Wetting of Powders. Langmuir, 2017, 33, 56-65.	1.6	31
41	Predicting feeder performance based on material flow properties. Powder Technology, 2017, 308, 135-148.	2.1	63
42	Diminished segregation in continuous powder mixing. Powder Technology, 2017, 309, 79-88.	2.1	43
43	Controlled shear system and resonant acoustic mixing: Effects on lubrication and flow properties of pharmaceutical blends. Powder Technology, 2017, 322, 332-339.	2.1	15
44	The effect of operating conditions on the residence time distribution and axial dispersion coefficient of a cohesive powder in a rotary kiln. Chemical Engineering Science, 2017, 158, 50-57.	1.9	22
45	Perspectives on the continuous manufacturing of powderâ€based pharmaceutical processes. AICHE Journal, 2016, 62, 1846-1862.	1.8	127
46	Improving dissolution kinetics of pharmaceuticals by fluidized bed impregnation of active pharmaceutical ingredients. AICHE Journal, 2016, 62, 4201-4214.	1.8	10
47	Quantitative validation and analysis of the regime map approach for the wet granulation of industrially relevant zirconium hydroxide powders. Powder Technology, 2016, 294, 177-184.	2.1	8
48	Effect of resonant acoustic mixing on pharmaceutical powder blends and tablets. Advanced Powder Technology, 2016, 27, 1141-1148.	2.0	36
49	Characterization of resonant acoustic mixing using near-infrared chemical imaging. Powder Technology, 2016, 297, 349-356.	2.1	32
50	Effects of processing parameters and blade patterns on continuous pharmaceutical powder mixing. Chemical Engineering and Processing: Process Intensification, 2016, 109, 59-67.	1.8	23
51	Near infrared spectroscopic calibration models for real time monitoring of powder density. International Journal of Pharmaceutics, 2016, 512, 61-74.	2.6	53
52	Enabling real time release testing by NIR prediction of dissolution of tablets made by continuous direct compression (CDC). International Journal of Pharmaceutics, 2016, 512, 96-107.	2.6	59
53	Statistical analysis and comparison of a continuous high shear granulator with a twin screw granulator: Effect of process parameters on critical granule attributes and granulation mechanisms. International Journal of Pharmaceutics, 2016, 513, 357-375.	2.6	47
54	A novel consolidation method to measure powder flow properties using a small amount of material. AICHE Journal, 2016, 62, 4193-4200.	1.8	1

#	Article	IF	CITATIONS
55	Using Residence Time Distributions (RTDs) to Address the Traceability of Raw Materials in Continuous Pharmaceutical Manufacturing. Journal of Pharmaceutical Innovation, 2016, 11, 64-81.	1.1	128
56	The effect of mechanical strain on properties of lubricated tablets compacted at different pressures. Powder Technology, 2016, 301, 657-664.	2.1	18
57	Effect of Shear Applied During a Pharmaceutical Process on Near Infrared Spectra. Applied Spectroscopy, 2016, 70, 455-466.	1.2	6
58	Prediction of conductive heating time scales of particles in a rotary drum. Chemical Engineering Science, 2016, 152, 45-54.	1.9	44
59	Predicting flow behavior of pharmaceutical blends using shear cell methodology: A quality by design approach. Powder Technology, 2016, 294, 22-29.	2.1	30
60	Prediction of dissolution profiles by non-destructive near infrared spectroscopy in tablets subjected to different levels of strain. Journal of Pharmaceutical and Biomedical Analysis, 2016, 117, 568-576.	1.4	54
61	Measurement of the axial dispersion coefficient of powders in a rotating cylinder: dependence on bulk flow properties. Powder Technology, 2016, 292, 298-306.	2.1	17
62	A method to analyze shear cell data of powders measured under different initial consolidation stresses. Powder Technology, 2016, 294, 105-112.	2.1	50
63	Effect of liquid addition on the bulk and flow properties of fine and coarse glass beads. AICHE Journal, 2016, 62, 648-658.	1.8	8
64	A Quantitative Approach to Understand Raw Material Variability. Methods in Pharmacology and Toxicology, 2016, , 85-104.	0.1	3
65	Advanced Control of Continuous Pharmaceutical Tablet Manufacturing Processes. Methods in Pharmacology and Toxicology, 2016, , 191-224.	0.1	11
66	Statistical comparison of dissolution profiles. Drug Development and Industrial Pharmacy, 2016, 42, 796-807.	0.9	20
67	Loss-in-Weight Feeding Trials Case Study: Pharmaceutical Formulation. Journal of Pharmaceutical Innovation, 2015, 10, 56-75.	1.1	63
68	Feedrate deviations caused by hopper refill of loss-in-weight feeders. Powder Technology, 2015, 283, 389-400.	2.1	76
69	Comparison of three rotational shear cell testers: Powder flowability and bulk density. Powder Technology, 2015, 283, 103-112.	2.1	47
70	Evaluation of resonant acoustic mixing performance. Powder Technology, 2015, 278, 46-56.	2.1	87
71	The effects of improper mixing and preferential wetting of active and excipient ingredients on content uniformity in high shear wet granulation. Powder Technology, 2015, 278, 266-277.	2.1	54
72	A simple color concentration measurement technique for powders. Powder Technology, 2015, 286, 392-400.	2.1	17

#	Article	IF	CITATIONS
73	Assessment of Blend and Content Uniformity. Technical Discussion of Sampling Plans and Application of ASTM E2709/E2810. Journal of Pharmaceutical Innovation, 2015, 10, 84-97.	1.1	19
74	Recommendations for the Assessment of Blend and Content Uniformity: Modifications to Withdrawn FDA Draft Stratified Sampling Guidance. Journal of Pharmaceutical Innovation, 2015, 10, 76-83.	1.1	29
75	A quantitative study of the effect of process parameters on key granule characteristics in a high shear wet granulation process involving a two component pharmaceutical blend. Advanced Powder Technology, 2015, 26, 315-322.	2.0	51
76	Characterization of pharmaceutical powder blends using in situ near-infrared chemical imaging. Chemical Engineering Science, 2014, 108, 244-257.	1.9	36
77	Implementation of an advanced hybrid MPC–PID control system using PAT tools into a direct compaction continuous pharmaceutical tablet manufacturing pilot plant. International Journal of Pharmaceutics, 2014, 473, 38-54.	2.6	80
78	A systematic framework for onsite design and implementation of a control system in a continuous tablet manufacturing process. Computers and Chemical Engineering, 2014, 66, 186-200.	2.0	85
79	Improving Continuous Powder Blending Performance Using Projection to Latent Structures Regression. Journal of Pharmaceutical Innovation, 2013, 8, 99-110.	1.1	8
80	Reduced-order discrete element method modeling. Chemical Engineering Science, 2013, 95, 12-26.	1.9	46
81	Effects of powder flow properties and shear environment on the performance of continuous mixing of pharmaceutical powders. Powder Technology, 2013, 246, 63-72.	2.1	102
82	Scale-up strategy for continuous powder blending process. Powder Technology, 2013, 235, 55-69.	2.1	20
83	Measurement of residence time distribution in a rotary calciner. AICHE Journal, 2013, 59, 4068-4076.	1.8	31
84	Effects of powder flow properties on capsule filling weight uniformity. Drug Development and Industrial Pharmacy, 2013, 39, 1464-1475.	0.9	44
85	Development of a methodology to estimate error in the on-line measurements of blend uniformity in a continuous powder mixing process. Powder Technology, 2013, 241, 263-271.	2.1	51
86	Role of consolidation state in the measurement of bulk density and cohesion. Powder Technology, 2013, 239, 366-373.	2.1	32
87	Determination of the Confidence Interval of the Relative Standard Deviation Using Convolution. Journal of Pharmaceutical Innovation, 2013, 8, 72-82.	1.1	27
88	Method to study the effect of blend flowability on the homogeneity of acetaminophen. Drug Development and Industrial Pharmacy, 2013, 39, 252-258.	0.9	6
89	Formulation and manufacture of pharmaceuticals by fluidizedâ€bed impregnation of active pharmaceutical ingredients onto porous carriers. AICHE Journal, 2013, 59, 4538-4552.	1.8	20
90	Continuous direct tablet compression: effects of impeller rotation rate, total feed rate and drug content on the tablet properties and drug release. Drug Development and Industrial Pharmacy, 2013, 39, 1802-1808.	0.9	39

#	Article	IF	CITATIONS
91	Improvement of Tablet Coating Uniformity Using a Quality by Design Approach. AAPS PharmSciTech, 2012, 13, 231-246.	1.5	20
92	An integrated approach for dynamic flowsheet modeling and sensitivity analysis of a continuous tablet manufacturing process. Computers and Chemical Engineering, 2012, 42, 30-47.	2.0	150
93	Optimizing continuous powder mixing processes using periodic section modeling. Chemical Engineering Science, 2012, 80, 70-80.	1.9	44
94	Impact of process parameters on critical performance attributes of a continuous blender—A DEMâ€based study. AICHE Journal, 2012, 58, 3676-3684.	1.8	18
95	Method for characterization of loss-in-weight feeder equipment. Powder Technology, 2012, 228, 395-403.	2.1	86
96	A review of the Residence Time Distribution (RTD) applications in solid unit operations. Powder Technology, 2012, 228, 416-423.	2.1	175
97	Computational Approaches for Studying the Granular Dynamics of Continuous Blending Processes, 2 – Population Balance and Dataâ€Based Methods. Macromolecular Materials and Engineering, 2012, 297, 9-19.	1.7	39
98	Periodic section modeling of convective continuous powder mixing processes. AICHE Journal, 2012, 58, 69-78.	1.8	32
99	Powder hydrophobicity and flow properties: Effect of feed frame design and operating parameters. AICHE Journal, 2012, 58, 697-706.	1.8	40
100	Effect of speed, loading and spray pattern on coating variability in a pan coater. Chemical Engineering Science, 2011, 66, 5107-5115.	1.9	28
101	Analysis of Pharmaceutical Tablet Coating Uniformity by Laser-Induced Breakdown Spectroscopy (LIBS). Journal of Pharmaceutical Innovation, 2011, 6, 77-87.	1.1	22
102	Computational Approaches for Studying the Granular Dynamics of Continuous Blending Processes, 1 – DEM Based Methods. Macromolecular Materials and Engineering, 2011, 296, 290-307.	1.7	64
103	Characterization of feeder effects on continuous solid mixing using fourier series analysis. AICHE Journal, 2011, 57, 1144-1153.	1.8	30
104	Investigation on the effect of blade patterns on continuous solid mixing performance. Canadian Journal of Chemical Engineering, 2011, 89, 969-984.	0.9	15
105	Characterizing continuous powder mixing using residence time distribution. Chemical Engineering Science, 2011, 66, 417-425.	1.9	166
106	Mixing order of glidant and lubricant – Influence on powder and tablet properties. International Journal of Pharmaceutics, 2011, 409, 269-277.	2.6	63
107	Effect of operating conditions and design parameters in a continuous powder mixer. Powder Technology, 2011, 208, 26-36.	2.1	153
108	Shear and flow behavior of pharmaceutical blends — Method comparison study. Powder Technology, 2011, 208, 628-636.	2.1	53

#	Article	IF	CITATIONS
109	Evaluation of strain-induced hydrophobicity of pharmaceutical blends and its effect on drug release rate under multiple compression conditions. Drug Development and Industrial Pharmacy, 2011, 37, 428-435.	0.9	24
110	Effects of shear and electrical properties on flow characteristics of pharmaceutical blends. AICHE Journal, 2010, 56, 570-583.	1.8	3
111	Investigation of the effect of impeller rotation rate, powder flow rate, and cohesion on powder flow behavior in a continuous blender using PEPT. Chemical Engineering Science, 2010, 65, 5658-5668.	1.9	79
112	Experimentally validated computations of heat transfer in granular materials in rotary calciners. Powder Technology, 2010, 198, 6-15.	2.1	83
113	Measuring the hydrophobicity of lubricated blends of pharmaceutical excipients. Powder Technology, 2010, 198, 101-107.	2.1	30
114	Design Space of Pharmaceutical Processes Using Data-Driven-Based Methods. Journal of Pharmaceutical Innovation, 2010, 5, 119-137.	1.1	70
115	Predictive modeling of pharmaceutical processes with missing and noisy data. AICHE Journal, 2010, 56, 2860-2872.	1.8	28
116	A simple correlation for predicting effective diffusivities in immobilized cell systems. Biotechnology and Bioengineering, 2010, 49, 223-227.	1.7	45
117	Study of the effects of feed frames on powder blend properties during the filling of tablet press dies. Powder Technology, 2010, 200, 105-116.	2.1	93
118	Real-time monitoring of drug concentration in a continuous powder mixing process using NIR spectroscopy. Chemical Engineering Science, 2010, 65, 5728-5733.	1.9	182
119	Predictive Modeling for Pharmaceutical Processes Using Kriging and Response Surface. Journal of Pharmaceutical Innovation, 2009, 4, 174-186.	1.1	34
120	An observed correlation between flow and electrical properties of pharmaceutical blends. Powder Technology, 2009, 192, 157-165.	2.1	39
121	Effects of rotation rate, mixing angle, and cohesion in two continuous powder mixers—A statistical approach. Powder Technology, 2009, 194, 217-227.	2.1	68
122	Effect of High Shear Blending Protocols and Blender Parameters on the Degree of API Agglomeration in Solid Formulations. Industrial & Engineering Chemistry Research, 2009, 48, 93-101.	1.8	14
123	Shear-induced APAP de-agglomeration. Drug Development and Industrial Pharmacy, 2009, 35, 1487-1495.	0.9	11
124	Practical methods for improving flow properties of active pharmaceutical ingredients. Drug Development and Industrial Pharmacy, 2009, 35, 1460-1469.	0.9	31
125	Using Compartment Modeling to Investigate Mixing Behavior of a Continuous Mixer. Journal of Pharmaceutical Innovation, 2008, 3, 161-174.	1.1	30
126	Quality by Design Methodology for Development and Scale-up of Batch Mixing Processes. Journal of Pharmaceutical Innovation, 2008, 3, 258-270.	1.1	30

#	Article	IF	CITATIONS
127	Characterization of continuous convective powder mixing processes. Powder Technology, 2008, 182, 368-378.	2.1	115
128	Evaluating the mixing performance of a ribbon blender. Powder Technology, 2008, 186, 247-254.	2.1	58
129	Spontaneous Separation of Charged Grains. Physical Review Letters, 2007, 99, 058001.	2.9	57
130	Hybrid DEM-compartment modeling approach for granular mixing. AICHE Journal, 2007, 53, 119-128.	1.8	39
131	A method for predicting hopper flow characteristics of pharmaceutical powders. Chemical Engineering Science, 2007, 62, 1536-1542.	1.9	44
132	Influence of shear intensity and total shear on properties of blends and tablets of lactose and cellulose lubricated with magnesium stearate. International Journal of Pharmaceutics, 2007, 336, 284-291.	2.6	66
133	Effect of moisture and magnesium stearate concentration on flow properties of cohesive granular materials. International Journal of Pharmaceutics, 2007, 336, 338-345.	2.6	79
134	A Quantitative Method for Modeling Blend Composition Distributions in the Presence of Agglomerates. Journal of Pharmaceutical Innovation, 2007, 2, 51-64.	1.1	0
135	Modeling and designing powder mixing processes utilizing compartment modeling. Computer Aided Chemical Engineering, 2006, 21, 1039-1044.	0.3	2
136	Characterizing powder mixing processes utilizing compartment models. International Journal of Pharmaceutics, 2006, 320, 14-22.	2.6	28
137	An experimental/computational approach for examining unconfined cohesive powder flow. International Journal of Pharmaceutics, 2006, 324, 116-127.	2.6	47
138	Avalanching flow of cohesive powders. Powder Technology, 2006, 164, 13-21.	2.1	111
139	Cohesive effects in powder mixing in a tumbling blender. Powder Technology, 2006, 165, 105-114.	2.1	142
140	Modeling of heat transfer in granular flow in rotating vessels. Chemical Engineering Science, 2006, 61, 6348-6360.	1.9	184
141	Flow - induced dilation of cohesive granular materials. AICHE Journal, 2006, 52, 4124-4132.	1.8	38
142	V-blender segregation patterns for free-flowing materials: effects of blender capacity and fill level. International Journal of Pharmaceutics, 2004, 269, 19-28.	2.6	37
143	A Homogeneity Study Using NIR Spectroscopy: Tracking Magnesium Stearate in Bohle Bin-Blender. Drug Development and Industrial Pharmacy, 2003, 29, 679-687.	0.9	50
144	Laminar Mixing in Eccentric Stirred Tank Systems. Canadian Journal of Chemical Engineering, 2002, 80, 546-557.	0.9	89

#	Article	IF	CITATIONS
145	Noise to order. Nature, 2001, 410, 251-258.	13.7	144
146	Granular segregation in the double-cone blender: Transitions and mechanisms. Physics of Fluids, 2001, 13, 578-587.	1.6	43
147	Experimentally validated computations of flow, mixing and segregation of non-cohesive grains in 3D tumbling blenders. Powder Technology, 2000, 109, 58-71.	2.1	174
148	Effect of Resin Characteristics on Fluidized Bed Adsorption of Proteins. Biotechnology Progress, 1999, 15, 932-940.	1.3	10
149	Spontaneous chaotic granular mixing. Nature, 1999, 397, 675-678.	13.7	87
150	Experimental and Modeling Studies of Diffusion in Immobilized Cell Systems: A Review of Recent Literature and Patents. Applied Biochemistry and Biotechnology, 1999, 80, 151-188.	1.4	24
151	Laser-induced fluorescence technique for the quantification of mixing in impinging jets. AICHE Journal, 1999, 45, 2477-2486.	1.8	82
152	Batch Uptake of Lysozyme: Effect of Solution Viscosity and Mass Transfer on Adsorption. Biotechnology Progress, 1998, 14, 913-921.	1.3	43
153	Mixing of granular material in a drum mixer undergoing rotational and rocking motions I. Uniform particles. Powder Technology, 1998, 98, 113-124.	2.1	44
154	Experimental and numerical characterization of viscous flow and mixing in an impinging jet contactor. Canadian Journal of Chemical Engineering, 1998, 76, 546-555.	0.9	51
155	Simulation of flow and mixing of particles in a rotating and rocking cylinder. AICHE Journal, 1998, 44, 1266-1276.	1.8	50
156	Analytic expression for the short-time rate of growth of the intermaterial contact perimeter in two-dimensional chaotic flows and Hamiltonian systems. Physical Review E, 1998, 58, 447-458.	0.8	27
157	Effect of Oxygen Limitations on Monoclonal Antibody Production by Immobilized Hybridoma Cells. Biotechnology Progress, 1997, 13, 301-310.	1.3	7
158	Sampling practices in powder blending. International Journal of Pharmaceutics, 1997, 155, 153-178.	2.6	185
159	Laminar Mixing: A Dynamical Systems Approach. , 0, , 89-143.		10
160	Solids Mixing. , 0, , 887-985.		6
161	Starch Products as Candidate Excipients in a Continuous Direct Compression Line. Journal of Pharmaceutical Innovation, 0, , 1.	1.1	0