John H Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/661738/publications.pdf

Version: 2024-02-01

55	2,451	24 h-index	48
papers	citations		g-index
58	58	58	2540
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Microtubule-targeting agents are clinically successful due to both mitotic and interphase impairment of microtubule function. Bioorganic and Medicinal Chemistry, 2014, 22, 5050-5059.	3.0	204
2	Peloruside A Does Not Bind to the Taxoid Site on \hat{I}^2 -Tubulin and Retains Its Activity in Multidrug-Resistant Cell Lines. Cancer Research, 2004, 64, 5063-5067.	0.9	191
3	Peloruside A, a novel antimitotic agent with paclitaxel-like microtubule- stabilizing activity. Cancer Research, 2002, 62, 3356-60.	0.9	181
4	Insights into the Distinct Mechanisms of Action of Taxane and Non-Taxane Microtubule Stabilizers from Cryo-EM Structures. Journal of Molecular Biology, 2017, 429, 633-646.	4.2	161
5	Structural Basis of Microtubule Stabilization by Laulimalide and Pelorusideâ€A. Angewandte Chemie - International Edition, 2014, 53, 1621-1625.	13.8	154
6	Role of DGAT enzymes in triacylglycerol metabolism. Archives of Biochemistry and Biophysics, 2018, 655, 1-11.	3.0	131
7	Synergistic Effects of Peloruside A and Laulimalide with Taxoid Site Drugs, but Not with Each Other, on Tubulin Assembly. Molecular Pharmacology, 2006, 70, 1555-1564.	2.3	112
8	The Binding Sites of Microtubule-Stabilizing Agents. Chemistry and Biology, 2013, 20, 301-315.	6.0	106
9	Microtubule-Stabilizing Activity of Zampanolide, a Potent Macrolide Isolated from the Tongan Marine Sponge <i>Cacospongia mycofijiensis</i> Journal of Medicinal Chemistry, 2009, 52, 7328-7332.	6.4	82
10	Zampanolide, a Potent New Microtubule-Stabilizing Agent, Covalently Reacts with the Taxane Luminal Site in Tubulin \hat{l}_{\pm} , \hat{l}_{\pm} -Heterodimers and Microtubules. Chemistry and Biology, 2012, 19, 686-698.	6.0	81
11	Peloruside A Synergizes with Other Microtubule Stabilizing Agents in Cultured Cancer Cell Lines. Molecular Pharmaceutics, 2007, 4, 269-280.	4.6	68
12	Hallmarks of Molecular Action of Microtubule Stabilizing Agents. Journal of Biological Chemistry, 2011, 286, 11765-11778.	3.4	59
13	Microtubule-Stabilizing Drugs from Marine Sponges: Focus on Peloruside A and Zampanolide. Marine Drugs, 2010, 8, 1059-1079.	4.6	55
14	Microtubule stabilization by peloruside A and paclitaxel rescues degenerating neurons from okadaic acidâ€induced tau phosphorylation. European Journal of Neuroscience, 2012, 35, 1705-1717.	2.6	51
15	Peloruside B, A Potent Antitumor Macrolide from the New Zealand Marine Sponge Mycale hentscheli: Isolation, Structure, Total Synthesis, and Bioactivity. Journal of Organic Chemistry, 2010, 75, 2-10.	3.2	48
16	Method for serum-free culture of late fetal and early postnatal rat brainstem neurons. Brain Research Protocols, 2001, 6, 91-99.	1.6	41
17	Marine Invertebrate Natural Products that Target Microtubules. Journal of Natural Products, 2018, 81, 691-702.	3.0	40
18	Peloruside- and Laulimalide-Resistant Human Ovarian Carcinoma Cells Have Î ² I-Tubulin Mutations and Altered Expression of Î ² II- and Î ² III-Tubulin Isotypes. Molecular Cancer Therapeutics, 2011, 10, 1419-1429.	4.1	37

#	Article	IF	CITATIONS
19	Developmental expression of $\hat{l}\frac{1}{4}$ and \hat{l} opioid receptors in the rat brainstem: evidence for a postnatal switch in $\hat{l}\frac{1}{4}$ isoform expression. Developmental Brain Research, 2004, 148, 185-196.	1.7	36
20	Peloruside A: a lead non-taxoid-site microtubule-stabilizing agent with potential activity against cancer, neurodegeneration, and autoimmune disease. Natural Product Reports, 2016, 33, 549-561.	10.3	34
21	Synergistic interactions between peloruside A and other microtubule-stabilizing and destabilizing agents in cultured human ovarian carcinoma cells and murine T cells. Cancer Chemotherapy and Pharmacology, 2011, 68, 117-126.	2.3	29
22	Dendrimer Heparan Sulfate Glycomimetics: Potent Heparanase Inhibitors for Anticancer Therapy. ACS Chemical Biology, 2018, 13, 3236-3242.	3.4	28
23	Polyhalogenated Indoles from the Red Alga <i>Rhodophyllis membranacea</i> Bromo-Chloro-lodo Secondary Metabolites. Journal of Natural Products, 2016, 79, 463-469.	3.0	26
24	Peloruside A Inhibits Growth of Human Lung and Breast Tumor Xenografts in an Athymic <i>nu</i> /i>/lonu/i> Mouse Model. Molecular Cancer Therapeutics, 2015, 14, 1816-1823.	4.1	24
25	Zampanolide, a Microtubule-Stabilizing Agent, Is Active in Resistant Cancer Cells and Inhibits Cell Migration. International Journal of Molecular Sciences, 2017, 18, 971.	4.1	24
26	Structure–activity studies of the pelorusides: new congeners and semi-synthetic analogues. Organic and Biomolecular Chemistry, 2011, 9, 4456.	2.8	23
27	\hat{l}^2 III-tubulin overexpression in cancer: Causes, consequences, and potential therapies. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188607.	7.4	21
28	Peloruside A inhibits microtubule dynamics in a breast cancer cell line MCF7. Investigational New Drugs, 2011, 29, 615-626.	2.6	20
29	Inhibition of human vascular endothelial cell migration and capillary-like tube formation by the microtubule-stabilizing agent peloruside A. Investigational New Drugs, 2015, 33, 564-574.	2.6	19
30	Effect of taxoid and nontaxoid site microtubuleâ€stabilizing agents on axonal transport of mitochondria in untransfected and ECFPâ€htau40â€transfected rat cortical neurons in culture. Journal of Neuroscience Research, 2014, 92, 1155-1166.	2.9	17
31	Zampanolides B–E from the Marine Sponge <i>Cacospongia mycofijiensis</i> : Potent Cytotoxic Macrolides with Microtubule-Stabilizing Activity. Journal of Natural Products, 2018, 81, 2539-2544.	3.0	17
32	Halogenated Meroditerpenoids from a South Pacific Collection of the Red Alga <i>Callophycus serratus</i> . Journal of Natural Products, 2018, 81, 2446-2454.	3.0	16
33	Acquired Resistance to Peloruside A and Laulimalide is Associated with Downregulation of Vimentin in Human Ovarian Carcinoma Cells. Pharmaceutical Research, 2012, 29, 3022-3032.	3.5	15
34	Role of tumor hypoxia in acquisition of resistance to microtubule-stabilizing drugs. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1855, 172-182.	7.4	15
35	î²I-tubulin mutations in the laulimalide/peloruside binding site mediate drug sensitivity by altering drug–tubulin interactions and microtubule stability. Cancer Letters, 2015, 365, 251-260.	7.2	15
36	Mu and delta opioid receptor immunoreactivity and mu receptor regulation in brainstem cells cultured from late fetal and early postnatal rats. Developmental Brain Research, 2004, 149, 9-19.	1.7	14

#	Article	IF	Citations
37	Hamigerans R and S: Nitrogenous Diterpenoids from the New Zealand Marine Sponge <i>Hamigera</i> tarangaensis. Journal of Natural Products, 2018, 81, 387-393.	3.0	14
38	Pyrroloquinoline derivatives from a Tongan specimen of the marine sponge Strongylodesma tongaensis. Tetrahedron Letters, 2019, 60, 1825-1829.	1.4	13
39	Growth inhibitory effects of a mu opioid on cultured cholinergic neurons from fetal rat ventral forebrain, brainstem, and spinal cord. Developmental Brain Research, 1999, 114, 69-77.	1.7	12
40	Potential for Treatment of Neurodegenerative Diseases with Natural Products or Synthetic Compounds that Stabilize Microtubules. Current Pharmaceutical Design, 2020, 26, 4362-4372.	1.9	12
41	Induction of accelerated senescence by the microtubule-stabilizing agent peloruside A. Investigational New Drugs, 2017, 35, 706-717.	2.6	11
42	Lack of involvement of $\hat{l}\frac{1}{4}$ 1 opioid receptors in dermorphin-induced inhibition of hypoxic and hypercapnic ventilation in rat pups. Respiratory Physiology and Neurobiology, 2002, 131, 199-212.	1.6	10
43	Effects of the microtubule stabilizing agent peloruside A on the proteome of HL-60 cells. Investigational New Drugs, 2011, 29, 544-553.	2.6	10
44	Paclitaxel effects on the proteome of HL-60 promyelocytic leukemic cells: comparison to peloruside A. Investigational New Drugs, 2012, 30, 121-129.	2.6	10
45	Laulimalide and peloruside A inhibit mitosis of Saccharomyces cerevisiae by preventing microtubule depolymerisation-dependent steps in chromosome separation and nuclear positioning. Molecular BioSystems, 2013, 9, 2842.	2.9	9
46	Resistance to Peloruside A and Laulimalide: Functional Significance of Acquired & Eamp; #946; I-tubulin Mutations at Sites Important for Drug-Tubulin Binding. Current Cancer Drug Targets, 2014, 14, 79-90.	1.6	9
47	Synthesis of diastereomeric, deoxy and ring-expanded sulfone analogues of aigialomycin D. Tetrahedron, 2013, 69, 10581-10592.	1.9	8
48	Synthesis of Novel Glycolipid Mimetics of Heparan Sulfate and Their Application in Colorectal Cancer Treatment in a Mouse Model. Chemistry - an Asian Journal, 2022, 17, .	3.3	8
49	Potential role of tubulin tyrosine ligase-like enzymes in tumorigenesis and cancer cell resistance. Cancer Letters, 2014, 350, 1-4.	7.2	7
50	Peloruside E (22-Norpeloruside A), a Pelorusane Macrolide from the New Zealand Marine Sponge <i>Mycale hentscheli, </i> Retains Microtubule-Stabilizing Properties. Journal of Natural Products, 2018, 81, 2125-2128.	3.0	6
51	Microtubule-stabilizing properties of the avocado-derived toxins (+)-(R)-persin and (+)-(R)-tetrahydropersin in cancer cells and activity of related synthetic analogs. Investigational New Drugs, 2016, 34, 277-289.	2.6	5
52	Characterizing the laulimalide–peloruside binding site using site-directed mutagenesis of TUB2 in S. cerevisiae. Molecular BioSystems, 2014, 10, 110-116.	2.9	2
53	Peloruside A, a microtubule-stabilizing agent, induces aneuploidy in ovarian cancer cells. Investigational New Drugs, 2016, 34, 424-438.	2.6	2

Synthesis and Microtubuleâ€Destabilizing Activity of N â€Cyclopropylâ€4â€((3,4â€dihydroquinolinâ€1(2 H) Tj ETQqQ 0 0 rgBT /Overloc

Article IF Citations

Rücktitelbild: Structural Basis of Microtubule Stabilization by Laulimalide and Pelorusideâ€...A (Angew.) Tj ETQq1 10.7843 14 rgBT