## Hemalatha Balaram

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6616612/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Tertiary and Quaternary Structure Organization in GMP Synthetases: Implications for Catalysis.<br>Biomolecules, 2022, 12, 871.                                                                                             | 4.0  | 2         |
| 2  | Structural basis for the hyperthermostability of an archaeal enzyme induced by succinimide formation. Biophysical Journal, 2021, 120, 3732-3746.                                                                           | 0.5  | 5         |
| 3  | Toward Developing Intuitive Rules for Protein Variant Effect Prediction Using Deep Mutational<br>Scanning Data. ACS Omega, 2020, 5, 29667-29677.                                                                           | 3.5  | 9         |
| 4  | Helices on Interdomain Interface Couple Catalysis in the ATPPase Domain with Allostery in<br><i>Plasmodium falciparum</i> GMP Synthetase. ChemBioChem, 2020, 21, 2805-2817.                                                | 2.6  | 7         |
| 5  | Structure and catalytic regulation of Plasmodium falciparum IMP specific nucleotidase. Nature<br>Communications, 2020, 11, 3228.                                                                                           | 12.8 | 4         |
| 6  | How a purine salvage enzyme singles out the right base. Journal of Biological Chemistry, 2019, 294,<br>11992-11993.                                                                                                        | 3.4  | 0         |
| 7  | Phosphoglycolate phosphatase is a metabolic proofreading enzyme essential for cellular function in<br>Plasmodium berghei. Journal of Biological Chemistry, 2019, 294, 4997-5007.                                           | 3.4  | 3         |
| 8  | Biochemical and physiological investigations on adenosine 5Ê <sup>1</sup> monophosphate deaminase from<br><i>Plasmodium spp</i> Molecular Microbiology, 2019, 112, 699-717.                                                | 2.5  | 1         |
| 9  | Biochemical characterization and essentiality of fumarate hydratase. Journal of Biological Chemistry, 2018, 293, 5878-5894.                                                                                                | 3.4  | 16        |
| 10 | Connecting Active‣ite Loop Conformations and Catalysis in Triosephosphate Isomerase: Insights from<br>a Rare Variation at Residueâ€96 in the Plasmodial Enzyme. ChemBioChem, 2016, 17, 620-629.                            | 2.6  | 9         |
| 11 | Role of W181 in modulating kinetic properties of <i>Plasmodium falciparum</i> hypoxanthine guanine<br>xanthine phosphoribosyltransferase. Proteins: Structure, Function and Bioinformatics, 2016, 84,<br>1658-1669.        | 2.6  | 2         |
| 12 | Product Release Pathways in Human and <i>Plasmodium falciparum</i> Phosphoribosyltransferase.<br>Journal of Chemical Information and Modeling, 2016, 56, 1528-1538.                                                        | 5.4  | 4         |
| 13 | Unexpected functional implication of a stable succinimide in the structural stability of<br>Methanocaldococcus jannaschii glutaminase. Nature Communications, 2016, 7, 12798.                                              | 12.8 | 22        |
| 14 | Exquisite Modulation of the Active Site of Methanocaldococcus jannaschii Adenylosuccinate<br>Synthetase in Forward Reaction Complexes. Biochemistry, 2016, 55, 2491-2499.                                                  | 2.5  | 0         |
| 15 | Structural and dynamical correlations in PfHGXPRT oligomers: A molecular dynamics simulation study. Journal of Biomolecular Structure and Dynamics, 2016, 34, 1590-1605.                                                   | 3.5  | 3         |
| 16 | Active site coupling in Plasmodium falciparum GMP synthetase is triggered by domain rotation. Nature<br>Communications, 2015, 6, 8930.                                                                                     | 12.8 | 24        |
| 17 | Differential Distortion of Purine Substrates by Human and <i>Plasmodium falciparum</i> Hypoxanthineâ€Guanine Phosphoribosyltransferase to Catalyse the Formation of Mononucleotides.<br>ChemPhysChem, 2015, 16, 2172-2181. | 2.1  | 8         |
| 18 | Probing the role of highly conserved residues in triosephosphate isomerase–Âanalysis of site specific mutants at positions 64 and 75 in the <i>Plasmodial</i> ) enzyme, FEBS Journal, 2015, 282, 3863-3882                 | 4.7  | 4         |

| #  | Article                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Kinetic mechanism of Plasmodium falciparum hypoxanthine-guanine-xanthine<br>phosphoribosyltransferase. Molecular and Biochemical Parasitology, 2015, 204, 111-120.                                                                                                     | 1.1 | 14        |
| 20 | Prediction of substrate specificity and preliminary kinetic characterization of the hypothetical protein PVX_123945 from Plasmodium vivax. Experimental Parasitology, 2015, 151-152, 56-63.                                                                            | 1.2 | 8         |
| 21 | Slow ligand-induced conformational switch increases the catalytic rate in Plasmodium falciparum hypoxanthine guanine xanthine phosphoribosyltransferase. Molecular BioSystems, 2015, 11, 1410-1424.                                                                    | 2.9 | 10        |
| 22 | Deciphering Differential Distortion of Purine Substrates by Human and Plasmodium falciparum HGPRT.<br>FASEB Journal, 2015, 29, 721.19.                                                                                                                                 | 0.5 | 0         |
| 23 | A Histidine Aspartate Ionic Lock Gates the Iron Passage in Miniferritins from Mycobacterium smegmatis. Journal of Biological Chemistry, 2014, 289, 11042-11058.                                                                                                        | 3.4 | 17        |
| 24 | Allosteric regulation and substrate activation in cytosolic nucleotidase <scp>II</scp> from<br><i><scp>L</scp>egionellaÂpneumophila</i> . FEBS Journal, 2014, 281, 1613-1628.                                                                                          | 4.7 | 29        |
| 25 | Solution Nuclear Magnetic Resonance Structure of the GATase Subunit and Structural Basis of the<br>Interaction between GATase and ATPPase Subunits in a <i>two-subunit-type</i> GMPS from<br><i>Methanocaldococcus jannaschii</i> . Biochemistry, 2013, 52, 4308-4323. | 2.5 | 8         |
| 26 | Mutational analysis of cysteine 328 and cysteine 368 at the interface of Plasmodium falciparum adenylosuccinate synthetase. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 589-597.                                                              | 2.3 | 2         |
| 27 | Hypoxanthine Guanine Phosphoribosyltransferase Distorts the Purine Ring of Nucleotide Substrates<br>and Perturbs the p <i>K</i> <sub>a</sub> of Bound Xanthosine Monophosphate. Biochemistry, 2011, 50,<br>4184-4193.                                                  | 2.5 | 10        |
| 28 | Ammonia Channeling in <i>Plasmodium falciparum</i> GMP Synthetase: Investigation by NMR<br>Spectroscopy and Biochemical Assays. Biochemistry, 2011, 50, 3346-3356.                                                                                                     | 2.5 | 16        |
| 29 | Mechanism of growth inhibition of intraerythrocytic stages of Plasmodium falciparum by<br>5-aminoimidazole-4-carboxamide ribonucleoside (AICAR). Molecular and Biochemical Parasitology,<br>2011, 177, 1-11.                                                           | 1.1 | 8         |
| 30 | Metabolic Fate of Fumarate, a Side Product of the Purine Salvage Pathway in the Intraerythrocytic<br>Stages of Plasmodium falciparum. Journal of Biological Chemistry, 2011, 286, 9236-9245.                                                                           | 3.4 | 57        |
| 31 | Reversible binding of zinc in Plasmodium falciparum Sir2: Structure and activity of the apoenzyme.<br>Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 1743-1750.                                                                                  | 2.3 | 25        |
| 32 | Studies on active site mutants of P. falciparum adenylosuccinate synthetase: Insights into enzyme<br>catalysis and activation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 1996-2002.                                                         | 2.3 | 4         |
| 33 | Elucidation of the substrate specificity, kinetic and catalytic mechanism of adenylosuccinate lyase<br>from Plasmodium falciparum. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2009, 1794,<br>642-654.                                                    | 2.3 | 40        |
| 34 | Crystal structure of a chimera of human and plasmodium falciparum hypoxanthine guanine phosphoribosyltransferases provides insights into oligomerization. Proteins: Structure, Function and Bioinformatics, 2008, 73, 1010-1020.                                       | 2.6 | 5         |
| 35 | Biochemical characterization of Plasmodium falciparum Sir2, a NAD+-dependent deacetylase.<br>Molecular and Biochemical Parasitology, 2008, 158, 139-151.                                                                                                               | 1.1 | 42        |
| 36 | Kinetic and biochemical characterization of <i>Plasmodium falciparum</i> GMP synthetase.<br>Biochemical Journal, 2008, 409, 263-273.                                                                                                                                   | 3.7 | 38        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Application of HPLC to study the kinetics of a branched bi-enzyme system consisting of hypoxanthine-guanine phosphoribosyltransferase and xanthine oxidaseâ€"an important biochemical system to evaluate the efficiency of the anticancer drug 6-mercaptopurine in ALL cell line. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 850, 7-14. | 2.3 | 10        |
| 38 | ISN1 nucleotidases and HAD superfamily protein fold: in silico sequence and structure analysis. In Silico Biology, 2007, 7, 187-93.                                                                                                                                                                                                                                                          | 0.9 | 9         |
| 39 | Plasmodium falciparum hypoxanthine guanine phosphoribosyltransferase. FEBS Journal, 2005, 272, 1900-1911.                                                                                                                                                                                                                                                                                    | 4.7 | 17        |
| 40 | Unique kinetic mechanism of Plasmodium falciparum adenylosuccinate synthetase. Molecular and<br>Biochemical Parasitology, 2004, 138, 1-8.                                                                                                                                                                                                                                                    | 1.1 | 27        |
| 41 | A non-active site mutation in human hypoxanthine guanine phosphoribosyltransferase expands substrate specificity. Archives of Biochemistry and Biophysics, 2004, 427, 116-122.                                                                                                                                                                                                               | 3.0 | 13        |
| 42 | Purification and Characterization of Recombinant Plasmodium falciparum Adenylosuccinate<br>Synthetase Expressed in Escherichia coli. Protein Expression and Purification, 2002, 25, 65-72.                                                                                                                                                                                                   | 1.3 | 32        |
| 43 | A point mutation at the subunit interface of hypoxanthine-guanine-xanthine<br>phosphoribosyltransferase impairs activity: role of oligomerization in catalysis. FEBS Letters, 2002,<br>521, 72-76.                                                                                                                                                                                           | 2.8 | 12        |
| 44 | Synthetic peptides as inactivators of multimeric enzymes: inhibition ofPlasmodium falciparumtriosephosphate isomerase by interface peptides. FEBS Letters, 2001, 501, 19-23.                                                                                                                                                                                                                 | 2.8 | 48        |
| 45 | Unusual Substrate Specificity of a Chimeric Hypoxanthine–Guanine Phosphoribosyltransferase<br>Containing Segments from the Plasmodium falciparum and Human Enzymes. Biochemical and<br>Biophysical Research Communications, 2000, 272, 596-602.                                                                                                                                              | 2.1 | 27        |
| 46 | Evidence for Multiple Active States of Plasmodium falciparum Hypoxanthine–Guanine–Xanthine<br>Phosphoribosyltransferase. Biochemical and Biophysical Research Communications, 2000, 279, 433-437.                                                                                                                                                                                            | 2.1 | 21        |