Michele K Anderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6616372/publications.pdf

Version: 2024-02-01

50 papers 3,854 citations

218381 26 h-index 233125 45 g-index

52 all docs 52 docs citations

times ranked

52

4019 citing authors

#	Article	IF	CITATIONS
1	Fetal Thymic Organ Culture (FTOC) Optimized for Gamma-Delta T Cell Studies. Methods in Molecular Biology, 2022, 2421, 243-265.	0.4	1
2	Realization of the T Lineage Program Involves GATA-3 Induction of Bcl11b and Repression of Cdkn2b Expression. Journal of Immunology, 2022, 209, 77-92.	0.4	1
3	Direct regulation of TCR rearrangement and expression by E proteins during early T cell development. WIREs Mechanisms of Disease, 2022, 14 , .	1.5	1
4	Cutting Edge: TCR-Î ² Selection Is Required at the CD4+CD8+ Stage of Human T Cell Development. Journal of Immunology, 2021, 206, 2271-2276.	0.4	5
5	Ontogenic timing, TÂcell receptor signal strength, and Notch signaling direct γδTÂcell functional differentiation inÂvivo. Cell Reports, 2021, 35, 109227.	2.9	8
6	DL4- $\hat{1}$ 4beads induce T cell lineage differentiation from stem cells in a stromal cell-free system. Nature Communications, 2021, 12, 5023.	5.8	43
7	More Than Two to Tango: Mesenchymal Cells Are Required for Early T Cell Development. Journal of Immunology, 2021, 207, 2203-2204.	0.4	0
8	Interaction between γÎTCR signaling and the E proteinâ€ld axis in γδT cell development. Immunological Reviews, 2020, 298, 181-197.	2.8	9
9	E2A regulates neural ectoderm fate specification in human embryonic stem cells. Development (Cambridge), 2020, 147, .	1.2	8
10	Precision Health Resource of Control iPSC Lines for Versatile Multilineage Differentiation. Stem Cell Reports, 2019, 13, 1126-1141.	2.3	24
11	Integration of Tâ€cell receptor, Notch and cytokine signals programs mouse γδTâ€cell effector differentiation. Immunology and Cell Biology, 2018, 96, 994-1007.	1.0	21
12	A key role for ILâ€₹R in the generation of microenvironments required for thymic dendritic cells. Immunology and Cell Biology, 2017, 95, 933-942.	1.0	4
13	Targeted Disruption of TCF12 Reveals HEB as Essential in Human Mesodermal Specification and Hematopoiesis. Stem Cell Reports, 2017, 9, 779-795.	2.3	25
14	HEB is required for the specification of fetal IL-17-producing $\hat{l}^3\hat{l}$ T cells. Nature Communications, 2017, 8, 2004.	5.8	45
15	A conserved alternative form of the purple sea urchin HEB/E2-2/E2A transcription factor mediates a switch in E-protein regulatory state in differentiating immune cells. Developmental Biology, 2016, 416, 149-161.	0.9	32
16	Transcriptional and Microenvironmental Regulation of $\hat{I}^3\hat{I}$ T Cell Development. , 2016, , 211-217.		0
17	Gamma delta T-cell differentiation and effector function programming, TCR signal strength, when and how much?. Cellular Immunology, 2015, 296, 70-75.	1.4	35
18	Editorial: GCN5 opens the door for the IRF-4-mediated cascade of B cell differentiation. Journal of Leukocyte Biology, 2014, 95, 386-387.	1.5	1

#	Article	IF	CITATIONS
19	Changing course by lymphocyte lineage redirection. Nature Immunology, 2013, 14, 199-201.	7.0	6
20	Transcriptional priming of intrathymic precursors for dendritic cell development. Development (Cambridge), 2013, 140, 1369-1369.	1.2	0
21	Dendritic Cell Development: A Choose-Your-Own-Adventure Story. Advances in Hematology, 2013, 2013, 1-16.	0.6	18
22	HEB in the Spotlight: Transcriptional Regulation of T-Cell Specification, Commitment, and Developmental Plasticity. Clinical and Developmental Immunology, 2012, 2012, 1-15.	3.3	33
23	Transcriptional priming of intrathymic precursors for dendritic cell development. Development (Cambridge), 2012, 139, 373-384.	1.2	20
24	HEB-Deficient T-Cell Precursors Lose T-Cell Potential and Adopt an Alternative Pathway of Differentiation. Molecular and Cellular Biology, 2011, 31, 971-982.	1.1	26
25	Developmental progression of fetal HEB ^{â^'/â^'} precursors to the pre‶â€cell stage is restored by HEBAlt. European Journal of Immunology, 2010, 40, 3173-3182.	1.6	13
26	HEBAlt enhances the T-cell potential of fetal myeloid-biased precursors. International Immunology, 2010, 22, 963-972.	1.8	12
27	Context-Dependent Regulation of Hematopoietic Lineage Choice by HEBAlt. Journal of Immunology, 2010, 185, 4109-4117.	0.4	11
28	Universal rules of immunity. Immunology and Cell Biology, 2009, 87, 507-509.	1.0	2
29	Transcription factor expression dynamics of early T-lymphocyte specification and commitment. Developmental Biology, 2009, 325, 444-467.	0.9	63
30	The Genome of the Sea Urchin Strongylocentrotus purpuratus. Science, 2006, 314, 941-952.	6.0	1,018
31	The immune gene repertoire encoded in the purple sea urchin genome. Developmental Biology, 2006, 300, 349-365.	0.9	513
32	At the crossroads: diverse roles of early thymocyte transcriptional regulators. Immunological Reviews, 2006, 209, 191-211.	2.8	71
33	The Basic Helix-Loop-Helix Transcription Factor HEBAlt Is Expressed in Pro-T Cells and Enhances the Generation of T Cell Precursors. Journal of Immunology, 2006, 177, 109-119.	0.4	65
34	Subversion of T lineage commitment by PU.1 in a clonal cell line system. Developmental Biology, 2005, 280, 448-466.	0.9	51
35	Localization of the Domains in Runx Transcription Factors Required for the Repression of CD4 in Thymocytes. Journal of Immunology, 2004, 172, 4359-4370.	0.4	82
36	Evolutionary Origins of Lymphocytes: Ensembles of T Cell and B Cell Transcriptional Regulators in a Cartilaginous Fish. Journal of Immunology, 2004, 172, 5851-5860.	0.4	43

#	Article	IF	CITATIONS
37	GATA-3 Expression Is Controlled by TCR Signals and Regulates CD4/CD8 Differentiation. Immunity, 2003, 19, 83-94.	6.6	223
38	Elements of Transcription Factor Network Design for T-Lineage Specification. Developmental Biology, 2002, 246, 29-44.	0.9	36
39	Definition of Regulatory Network Elements for T Cell Development by Perturbation Analysis with PU.1 and GATA-3. Developmental Biology, 2002, 246, 103-121.	0.9	74
40	Constitutive Expression of PU.1 in Fetal Hematopoietic Progenitors Blocks T Cell Development at the Pro-T Cell Stage. Immunity, 2002, 16, 285-296.	6.6	151
41	Complex expression patterns of lymphocyte-specific genes during the development of cartilaginous fish implicate unique lymphoid tissues in generating an immune repertoire. International Immunology, 2001, 13, 567-580.	1.8	81
42	A long form of the skate IgX gene exhibits a striking resemblance to the new shark IgW and IgNARC genes. Immunogenetics, 1999, 49, 56-67.	1.2	50
43	Transcriptional regulation of lymphocyte lineage commitment. BioEssays, 1999, 21, 726-742.	1.2	40
44	EVOLUTION OF ANTIGEN BINDING RECEPTORS. Annual Review of Immunology, 1999, 17, 109-147.	9.5	308
45	Persistent Effects of Doxorubicin on Cardiac Gene Expression. Journal of Molecular and Cellular Cardiology, 1999, 31, 1435-1446.	0.9	60
46	\hat{l}_{\pm} , \hat{l}^{2} , \hat{l}^{3} , and \hat{l} T Cell Antigen Receptor Genes Arose Early in Vertebrate Phylogeny. Immunity, 1997, 6, 1-11.	6.6	271
47	The structure and organization of immunoglobulin genes in lower vertebrates., 1995,, 315-341.		12
48	Generation of immunoglobulin light chain gene diversity in Raja erinacea is not associated with somatic rearrangement, an exception to a central paradigm of B cell immunity Journal of Experimental Medicine, 1995, 182, 109-119.	4.2	77
49	Complete genomic sequence and patterns of transcription of a member of an unusual family of closely related, chromosomally dispersed Ig gene clusters in Raja. International Immunology, 1994, 6, 1661-1670.	1.8	46
50	Immunoglobulin light chain class multiplicity and alternative organizational forms in early vertebrate phylogeny. Immunogenetics, 1994, 40, 83-99.	1.2	115