Yasushi Mino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6616210/publications.pdf Version: 2024-02-01

		687363	713466
31	448	13	21
papers	citations	h-index	g-index
32	32	32	481
all docs	docs citations	times ranked	citing authors

Υλεμεμι Μίνο

#	Article	lF	CITATIONS
1	High-Resolution Numerical Simulation of Microfiltration of Oil-in-Water Emulsion Permeating through a Realistic Membrane Microporous Structure Generated by Focused Ion Beam Scanning Electron Microscopy Images. Langmuir, 2022, 38, 2094-2108.	3.5	11
2	Lattice Boltzmann model for capillary interactions between particles at a liquid-vapor interface under gravity. Physical Review E, 2022, 105, 045316.	2.1	4
3	Measurement of Apparent Powder Viscosity by Tuning-fork Vibration Viscometer. Journal of the Society of Powder Technology, Japan, 2021, 58, 250-254.	0.1	1
4	Direct numerical simulation of permeation of particles through a realistic fibrous filter obtained from X-ray computed tomography images utilizing signed distance function. Powder Technology, 2021, 385, 131-143.	4.2	17
5	Simulation on Pore Formation from Polymer Solution at Surface in Contact with Solid Substrate via Thermally Induced Phase Separation. Membranes, 2021, 11, 527.	3.0	3
6	Lattice Boltzmann method for simulation of wettable particles at a fluid-fluid interface under gravity. Physical Review E, 2020, 101, 033304.	2.1	9
7	Development of Chemical Cold Generation System from Unused Thermal Energy. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2020, 106, 556-563.	0.4	0
8	Numerical simulation of particulate cake formation in cross-flow microfiltration: Effects of attractive forces. Advanced Powder Technology, 2019, 30, 1592-1599.	4.1	13
9	Numerical Simulation of Wetting Phenomena on Solid Surface Using Free-energy Lattice Boltzmann Method. Journal of the Society of Powder Technology, Japan, 2019, 56, 550-555.	0.1	1
10	Lattice-Boltzmann flow simulation of an oil-in-water emulsion through a coalescing filter: Effects of filter structure. Chemical Engineering Science, 2018, 177, 210-217.	3.8	31
11	Effect of Coating Mixing Conditions on the Color Tone of Cobalt Blue Pigment Having a Core-shell Structure Obtained by Solid Phase Synthesis of Coated Particles. Journal of the Society of Powder Technology, Japan, 2018, 55, 165-170.	0.1	1
12	Simulations of particulate flow passing through membrane pore under dead-end and constant-pressure filtration condition. Chemical Engineering Science, 2018, 190, 68-76.	3.8	18
13	Numerical Model for Moving Solid-Liquid Boundary Based on the Lattice Boltzmann Method and Applications to Particulate Flow Systems. Journal of the Society of Powder Technology, Japan, 2018, 55, 536-541.	0.1	2
14	ã€Original Contribution】Numerical Simulation of Filtration Process of Particle Suspension Using Lattice Boltzmann Method and Discrete Element Method. Membrane, 2018, 43, 286.	0.0	1
15	Effect of internal mass in the lattice Boltzmann simulation of moving solid bodies by the smoothed-profile method. Physical Review E, 2017, 95, 043309.	2.1	21
16	Functional magnetic particles providing osmotic pressure as reusable draw solutes in forward osmosis membrane process. Advanced Powder Technology, 2016, 27, 2136-2144.	4.1	20
17	Permeation of oilâ€inâ€water emulsions through coalescing filter: Twoâ€dimensional simulation based on phaseâ€field model. AICHE Journal, 2016, 62, 2525-2532.	3.6	27
18	Effects of the ionic strength of sodium hypochlorite solution on membrane cleaning. Journal of Membrane Science, 2016, 514, 566-573.	8.2	12

Yasushi Mino

#	Article	IF	CITATIONS
19	Numerical simulation of coalescence phenomena of oil-in-water emulsions permeating through straight membrane pore. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 491, 70-77.	4.7	22
20	ã€Original Contribution〠Numerical Simulation of Membrane Permeation of Oil–in–Water Emulsions containing Surfactants. Membrane, 2015, 40, 155-160.	0.0	2
21	<i>In Situ</i> Observation of Meniscus Shape Deformation with Colloidal Stripe Pattern Formation in Convective Self-Assembly. Langmuir, 2015, 31, 4121-4128.	3.5	20
22	Three-dimensional phase-field simulations of membrane porous structure formation by thermally induced phase separation in polymer solutions. Journal of Membrane Science, 2015, 483, 104-111.	8.2	48
23	Controlling self-assembled structure of Au nanoparticles by convective self-assembly with liquid-level manipulation. Advanced Powder Technology, 2014, 25, 811-815.	4.1	8
24	Permeation of concentrated oil-in-water emulsions through a membrane pore: numerical simulation using a coupled level set and the volume-of-fluid method. Soft Matter, 2014, 10, 7985-7992.	2.7	41
25	Coordinated Numerical Simulation of Porous Membrane Formation by the Phase Field Method and Particulate-Laden Flow. Kagaku Kogaku Ronbunshu, 2014, 40, 230-233.	0.3	2
26	Formation of Regular Stripes of Chemically Converted Graphene on Hydrophilic Substrates. ACS Applied Materials & Interfaces, 2013, 5, 6176-6181.	8.0	3
27	Investigation of Colloidal Stripe Formation Mechanism by In-situ Analysis of Meniscus Shape in Convective Self-assembly Process. Journal of the Society of Powder Technology, Japan, 2013, 50, 332-341.	0.1	1
28	Controlling Self-Assembled Structure of Au Nanoparticles by Convective Self-Assembly with Liquid-Level Manipulation. Journal of the Society of Powder Technology, Japan, 2012, 49, 356-361.	0.1	1
29	Spontaneous Formation of Cluster Array of Gold Particles by Convective Self-Assembly. Langmuir, 2012, 28, 12982-12988.	3.5	42
30	Colloidal Stripe Pattern with Controlled Periodicity by Convective Self-Assembly with Liquid-Level Manipulation. ACS Applied Materials & amp; Interfaces, 2012, 4, 3184-3190.	8.0	29
31	Fabrication of Colloidal Grid Network by Two-Step Convective Self-Assembly. Langmuir, 2011, 27, 5290-5295.	3.5	37