
Konstantin Krutovsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6615977/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mixed-species versus monocultures in plantation forestry: Development, benefits, ecosystem services and perspectives for the future. Global Ecology and Conservation, 2018, 15, e00419.	1.0	210
2	Forestâ€ŧree population genomics and adaptive evolution. New Phytologist, 2006, 170, 227-238.	3.5	206
3	Association Genetics of Coastal Douglas Fir (<i>Pseudotsuga menziesii</i> var. <i>menziesii</i> ,) Tj ETQq1 1 0.7	84314 rgB 1.2	T /Overlock
4	Nucleotide Diversity and Linkage Disequilibrium in Cold-Hardiness- and Wood Quality-Related Candidate Genes in Douglas Fir. Genetics, 2005, 171, 2029-2041.	1.2	167
5	Comparative Mapping in the Pinaceae. Genetics, 2004, 168, 447-461.	1.2	117
6	RAPDs and allozymes exhibit similar levels of diversity and differentiation among populations and races of Douglas-fir. Heredity, 1998, 81, 69-78.	1.2	100
7	Evolution of Exon-Intron Structure and Alternative Splicing. PLoS ONE, 2011, 6, e18055.	1.1	94
8	Multilocus Patterns of Nucleotide Diversity and Divergence Reveal Positive Selection at Candidate Genes Related to Cold Hardiness in Coastal Douglas Fir (<i>Pseudotsuga menziesii</i> var.) Tj ETQq0 0 0 rgBT /O	ve rlø ck 10	т∮лбО 457 Т
9	Structure and expression of duplicate AGAMOUS orthologues in poplar. Plant Molecular Biology, 2000, 44, 619-634.	2.0	88
10	Introgressive hybridization and phylogenetic relationships between Norway, Picea abies (L.) Karst., and Siberian, P. obovata Ledeb., spruce species studied by isozyme loci. Heredity, 1995, 74, 464-480.	1.2	78
11	Nuclear DNA diversity, population differentiation, and phylogenetic relationships in the California closed-cone pines based on RAPD and allozyme markers. Genome, 1999, 42, 893-908.	0.9	78
12	An annotated genetic map of loblolly pine based on microsatellite and cDNA markers. BMC Genetics, 2011, 12, 17.	2.7	60
13	A DEFICIENS Homolog from the Dioecious Tree Black Cottonwood Is Expressed in Female and Male Floral Meristems of the Two-Whorled, Unisexual Flowers. Plant Physiology, 2000, 124, 627-640.	2.3	56
14	Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas-fir. IV. Cold-hardiness QTL verification and candidate gene mapping. Molecular Breeding, 2005, 15, 145-156.	1.0	53
15	Exome genotyping, linkage disequilibrium and population structure in loblolly pine (Pinus taeda L.). BMC Genomics, 2016, 17, 730.	1.2	53
16	A Reference Genome Sequence for the European Silver Fir (<i>Abies alba</i> Mill.): A Community-Generated Genomic Resource. G3: Genes, Genomes, Genetics, 2019, 9, 2039-2049.	0.8	53

17	Siberian larch (Larix sibirica Ledeb.) mitochondrial genome assembled using both short and long nucleotide sequence reads is currently the largest known mitogenome. BMC Genomics, 2020, 21, 654.	1.2	51
----	---	-----	----

18 RAPD Genome maps of Douglas-fir. , 1998, 89, 197-205.

KONSTANTIN KRUTOVSKY

#	Article	IF	CITATIONS
19	Mobile genetic elements explain size variation in the mitochondrial genomes of four closely-related Armillaria species. BMC Genomics, 2019, 20, 351.	1.2	49
20	Highly variable SSR markers in Douglas-fir: Mendelian inheritance and map locations. Theoretical and Applied Genetics, 2004, 108, 873-880.	1.8	47
21	Landscape Genomics: Understanding Relationships Between Environmental Heterogeneity and Genomic Characteristics of Populations. Population Genomics, 2017, , 261-322.	0.2	46
22	Self-citation can inflate h-index. Scientometrics, 2008, 77, 373-375.	1.6	45
23	Relationships among the Spruces (Picea, Pinaceae) of Southwestern North America. Systematic Botany, 2004, 29, 275-295.	0.2	42
24	Genetic structure and association mapping of adaptive and selective traits in the east Texas loblolly pine (Pinus taeda L.) breeding populations. Tree Genetics and Genomes, 2013, 9, 1161-1178.	0.6	40
25	Stepwise large genome assembly approach: a case of Siberian larch (Larix sibirica Ledeb). BMC Bioinformatics, 2019, 20, 37.	1.2	40
26	Estimation of population structure in coastal Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco var. menziesii] using allozyme and microsatellite markers. Tree Genetics and Genomes, 2009, 5, 641-658.	0.6	39
27	Genetic variation and signatures of natural selection in populations of European beech (Fagus) Tj ETQq1 1 0.78	34314 rgBT 0.6	-/Oygrlock 10
28	Development of Genetic Markers in Eucalyptus Species by Target Enrichment and Exome Sequencing. PLoS ONE, 2015, 10, e0116528.	1.1	29
29	Association genetics of growth and adaptive traits in loblolly pine (Pinus taeda L.) using whole-exome-discovered polymorphisms. Tree Genetics and Genomes, 2017, 13, 1.	0.6	29
30	RAPD markers of mitochondrial origin exhibit lower population diversity and higher differentiation than RAPDs of nuclear origin in Douglas fir. Molecular Ecology, 1998, 7, 801-812.	2.0	25
31	Detecting the genetic basis of local adaptation in loblolly pine (Pinus taeda L.) using whole exomeâ€wide genotyping and an integrative landscape genomics analysis approach. Ecology and Evolution, 2019, 9, 6798-6809.	0.8	25
32	Landscape genomic insights into the historic migration of mountain hemlock in response to Holocene climate change. American Journal of Botany, 2017, 104, 439-450.	0.8	24
33	Integrating DNA Barcoding and Traditional Taxonomy for the Identification of Dipterocarps in Remnant Lowland Forests of Sumatra. Plants, 2019, 8, 461.	1.6	24
34	Seed dispersal at alpine treeline: an assessment of seed movement within the alpine treeline ecotone. Ecosphere, 2017, 8, e01649.	1.0	23
35	Colonization history of Scots pine in Eastern Europe and North Asia based on mitochondrial DNA variation. Tree Genetics and Genomes, 2018, 14, 1.	0.6	23
36	Response of Four Tree Species to Changing Climate in a Moisture-Limited Area of South Siberia. Forests, 2019, 10, 999.	0.9	23

#	Article	IF	CITATIONS
37	Isolation of a full-length CC–NBS–LRR resistance gene analog candidate from sugar pine showing low nucleotide diversity. Tree Genetics and Genomes, 2006, 2, 76-85.	0.6	22
38	Conserved ortholog sets in forest trees. Tree Genetics and Genomes, 2006, 3, 61-70.	0.6	22
39	Transferability and Polymorphism of SSR Markers Located in Flavonoid Pathway Genes in Fragaria and Rubus Species. Genes, 2020, 11, 11.	1.0	21
40	The effect of individual genetic heterozygosity on general homeostasis, heterosis and resilience in Siberian larch (Larix sibirica Ledeb.) using dendrochronology and microsatellite loci genotyping. Dendrochronologia, 2016, 38, 26-37.	1.0	18
41	Population Epigenomics: Advancing Understanding of Phenotypic Plasticity, Acclimation, Adaptation and Diseases. Population Genomics, 2018, , 179-260.	0.2	18
42	A candidate gene association analysis identifies SNPs potentially involved in drought tolerance in European beech (Fagus sylvatica L.). Scientific Reports, 2021, 11, 2386.	1.6	16
43	Somaclonal variation of haploid in vitro tissue culture obtained from Siberian larch (Larix sibirica) Tj ETQq1 1 Biology - Plant, 2014, 50, 655-664.	0.784314 rgBT 0.9	/Overlock 1 15
44	Siberian larch (Larix sibirica Ledeb.) chloroplast genome and development of polymorphic chloroplast markers. BMC Bioinformatics, 2019, 20, 38.	1.2	15
45	Gene Flow, Spatial Structure, Local Adaptation, and Assisted Migration in Trees. , 2012, , 71-116.		14
46	Genetic diversity and differentiation of introduced red oak (Quercus rubra) in Germany in comparison with reference native North American populations. European Journal of Forest Research, 2019, 138, 275-285.	1.1	13
47	Saving the world's ash forests calls for international cooperation now. Nature Ecology and Evolution, 2019, 3, 141-144.	3.4	13
48	Effect of Natural Polysaccharide Matrix-Based Selenium Nanocomposites on Phytophthora cactorum and Rhizospheric Microorganisms. Nanomaterials, 2021, 11, 2274.	1.9	13
49	Predicting Adaptive Genetic Variation of Loblolly Pine (Pinus taeda L.) Populations Under Projected Future Climates Based on Multivariate Models. Journal of Heredity, 2019, 110, 857-865.	1.0	12
50	Selenium Nanocomposites in Natural Matrices as Potato Recovery Agent. International Journal of Molecular Sciences, 2021, 22, 4576.	1.8	12
51	Genetic structure of coast redwood (Sequoia sempervirens [D. Don] Endl.) populations in and outside of the natural distribution range based on nuclear and chloroplast microsatellite markers. PLoS ONE, 2020, 15, e0243556.	1.1	12
52	Development of new mitochondrial DNA markers in Scots pine (Pinus sylvestris L.) for population and phylogeographic studies. Russian Journal of Genetics, 2015, 51, 1199-1203.	0.2	11
53	De novo assembling and primary analysis of genome and transcriptome of gray whale Eschrichtius robustus. BMC Evolutionary Biology, 2017, 17, 258.	3.2	11
54	Morphological and Genetic Diversity of Sea Buckthorn (Hippophae rhamnoides L.) in the Karakoram Mountains of Northern Pakistan. Diversity, 2018, 10, 76.	0.7	11

#	Article	IF	CITATIONS
55	Assessment of Genetic Diversity in Differently Colored Raspberry Cultivars Using SSR Markers Located in Flavonoid Biosynthesis Genes. Agronomy, 2019, 9, 518.	1.3	11
56	Differential expression of flowering genes in <i>Arabidopsis thaliana</i> under chronic and acute ionizing radiation. International Journal of Radiation Biology, 2019, 95, 626-634.	1.0	11
57	Morphological and genetic diversity of shea tree (Vitellaria paradoxa) in the savannah regions of Ghana. Genetic Resources and Crop Evolution, 2017, 64, 1253-1268.	0.8	10
58	Growth and Its Relationship to Individual Genetic Diversity of Mountain Hemlock (Tsuga mertensiana) at Alpine Treeline in Alaska: Combining Dendrochronology and Genomics. Forests, 2017, 8, 418.	0.9	10
59	Exploring the genetic basis of gene transcript abundance and metabolite levels in loblolly pine (Pinus) Tj ETQq1 1	0,784314	⊦rgBT /Overle
60	…Fell Upas Sits, the Hydra-Tree of Death â€, or the Phytotoxicity of Trees. Molecules, 2019, 24, 1636.	1.7	10
61	Novel Nanobiocomposites Based on Natural Polysaccharides as Universal Trophic Low-Dose Micronutrients. International Journal of Molecular Sciences, 2021, 22, 12006.	1.8	10
62	Larix species range dynamics in Siberia since the Last Glacial captured from sedimentary ancient DNA. Communications Biology, 2022, 5, .	2.0	10
63	Allozyme evidence for polyzygotic polyembryony in Siberian stone pine (Pinus sibirica Du Tour). Theoretical and Applied Genetics, 1995, 90, 811-818.	1.8	9
64	Conservation genetics and evolutionary history of Gleditsia caspica: Inferences from allozyme diversity in populations from Azerbaijan. Conservation Genetics, 2004, 5, 195-204.	0.8	9
65	Development of microsatellite genetic markers in Siberian stone pine (Pinus sibirica Du Tour) based on the de novo whole genome sequencing. Russian Journal of Genetics, 2016, 52, 1263-1271.	0.2	9
66	Gene-specific sex-linked genetic markers in date palm (Phoenix dactylifera L.). Genetic Resources and Crop Evolution, 2018, 65, 1-10.	0.8	9
67	Mitochondrial DNA in Siberian conifers indicates multiple postglacial colonization centers. Canadian Journal of Forest Research, 2019, 49, 875-883.	0.8	9
68	Mass spectrometry reveals the presence of specific set of epigenetic DNA modifications in the Norway spruce genome. Scientific Reports, 2019, 9, 19314.	1.6	9
69	From population genetics to population genomics of forest trees: Integrated population genomics approach. Russian Journal of Genetics, 2006, 42, 1088-1100.	0.2	8
70	Plant responses to global change: next generation biogeography. Physical Geography, 2016, 37, 93-119.	0.6	8
71	High Morphological Differentiation in Crown Architecture Contrasts with Low Population Genetic Structure of German Norway Spruce Stands. Forests, 2018, 9, 752.	0.9	8
72	Genetic Variation of European Beech Populations and Their Progeny from Northeast Germany to Southwest Switzerland. Forests, 2018, 9, 469.	0.9	8

#	Article	IF	CITATIONS
73	Crown morphology in Norway spruce (Picea abies [Karst.] L.) as adaptation to mountainous environments is associated with single nucleotide polymorphisms (SNPs) in genes regulating seasonal growth rhythm. Tree Genetics and Genomes, 2020, 16, .	0.6	8
74	Development of microsatellite genetic markers in Siberian larch (Larix sibirica Ledeb.) based on the de novo whole genome sequencing. Russian Journal of Genetics, 2017, 53, 1194-1199.	0.2	7
75	Complete mitochondrial genome of a woolly mammoth (<i>Mammuthus primigenius</i>) from Maly Lyakhovsky Island (New Siberian Islands, Russia) and its phylogenetic assessment. Mitochondrial DNA Part B: Resources, 2018, 3, 596-598.	0.2	7
76	Advancing Biogeography Through Population Genomics. Population Genomics, 2018, , 539-585.	0.2	7
77	Taxonomy of dark- and white-barked birches related to Betula pendula and B. pubescens (Betulaceae) in Ukraine based on both morphological traits and DNA markers. Botanical Journal of the Linnean Society, 2019, 191, 142-154.	0.8	7
78	De novo sequencing, assembly and functional annotation of Armillaria borealis genome. BMC Genomics, 2020, 21, 534.	1.2	7
79	Genetic variation of introduced red oak (Quercus rubra) stands in Germany compared to North American populations. European Journal of Forest Research, 2020, 139, 321-331.	1.1	7
80	Targeted re-sequencing and genome-wide association analysis for wood property traits in breeding population of Eucalyptus tereticornis × E. grandis. Genomics, 2021, 113, 4276-4292.	1.3	7
81	De novo transcriptome assembly of cold stressed clones of the hexaploid Sequoia sempervirens (D.) Tj ETQq1 1	0.784314 2.4	rgBT /Overloo
82	Genetic diversity of common guava in Kenya: an underutilized naturalized fruit species. Fruits, 2019, 74, 236-248.	0.3	6
83	Genetic mechanisms of aging in plants: What can we learn from them?. Ageing Research Reviews, 2022, 77, 101601.	5.0	6
84	Tree Rings Reveal the Impact of Soil Temperature on Larch Growth in the Forest-Steppe of Siberia. Forests, 2021, 12, 1765.	0.9	6
85	Early Detection and Identification of the Main Fungal Pathogens for Resistance Evaluation of New Genotypes of Forest Trees. Forests, 2018, 9, 732.	0.9	5
86	Development of novel polymorphic nuclear and chloroplast microsatellite markers in coast redwood (Sequoia sempervirens). Plant Genetic Resources: Characterisation and Utilisation, 2019, 17, 293-297.	0.4	5
87	Various effects of the expression of the xyloglucanase gene from Penicillium canescens in transgenic aspen under semi-natural conditions. BMC Plant Biology, 2020, 20, 251.	1.6	5
88	Development of novel Quercus rubra chloroplast genome CAPS markers for haplotype identification. Silvae Genetica, 2020, 69, 78-85.	0.4	5
89	Species- and Age-Specific Growth Reactions to Extreme Droughts of the Keystone Tree Species across Forest-Steppe and Sub-Taiga Habitats of South Siberia. Forests, 2022, 13, 1027.	0.9	5
90	Molecular evolution of drought tolerance and wood strength related candidate genes in loblolly pine (Pinus taeda L.). Silvae Genetica, 2014, 63, 59-66.	0.4	4

#	Article	IF	CITATIONS
91	Development of Nuclear Microsatellite Markers with Long (Tri-, Tetra-, Penta-, and Hexanucleotide) Motifs for Three Larch Species Based on the de novo Whole Genome Sequencing of Siberian Larch (Larix sibirica Ledeb.). Russian Journal of Genetics, 2019, 55, 444-450.	0.2	4
92	Effect of Phosphinothricin on Transgenic Downy Birch (Betula pubescens Ehrh.) Containing bar or CS1 Genes. Forests, 2019, 10, 1067.	0.9	4
93	Chloroplast Haplotypes of Northern Red Oak (Quercus rubra L.) Stands in Germany Suggest Their Origin from Northeastern Canada. Forests, 2020, 11, 1025.	0.9	4
94	Genome-Wide Prediction of Transcription Start Sites in Conifers. International Journal of Molecular Sciences, 2022, 23, 1735.	1.8	4
95	Comparative analysis of alignment-free genome clustering and whole genome alignment-based phylogenomic relationship of coronaviruses. PLoS ONE, 2022, 17, e0264640.	1.1	4
96	Comparative Genomics of Seasonal Senescence in Forest Trees. International Journal of Molecular Sciences, 2022, 23, 3761.	1.8	4
97	Effect of Selenium Nanocomposites Based on Natural Polymer Matrices on the Biomass and Storage of Potato Tubers in a Field Experiment. Agronomy, 2022, 12, 1281.	1.3	4
98	Effects of megagametophyte removal on DNA yield and early seedling growth in coastal Douglas-fir. Canadian Journal of Forest Research, 1997, 27, 964-968.	0.8	3
99	Structural and Functional Organization of the Mitochondrial DNA Control Region in the Woolly Mammoth (Mammuthus primigenius). Molecular Biology, 2019, 53, 560-570.	0.4	3
100	Hybrid and Environmental Effects on Gene Expression in Poplar Clones in Pure and Mixed with Black Locust Stands. Forests, 2020, 11, 1075.	0.9	3
101	ITS secondary structure reconstruction to resolve taxonomy and phylogeny of the Betula L. genus. PeerJ, 2021, 9, e10889.	0.9	3
102	Structure and Phylogeny of the Curly Birch Chloroplast Genome. Frontiers in Genetics, 2021, 12, 625764.	1.1	3
103	Postgenomic technologies in practical forestry: development of genome-wide markers for timber origin identification and other applications. Forestry Engineering Journal, 2019, 9, 9-16.	0.1	3
104	Conflicting genomic signals affect phylogenetic inference in four species of North American pines. AoB PLANTS, 2016, 8, .	1.2	2
105	De Novo Assembly and Cluster Analysis of Siberian Larch Transcriptome and Genome. Lecture Notes in Computer Science, 2016, , 455-464.	1.0	2
106	Mating System in a Native Norway Spruce (Picea abies [L.] KARST.) Stand-Relatedness and Effective Pollen Population Size Show an Association with the Germination Percentage of Single Tree Progenies. Diversity, 2020, 12, 266.	0.7	2
107	Genetic diversity and differentiation of Olea europaea subsp. cuspidata (Wall. & G.Don) Cif. in the Hajar Mountains of Oman. Genetic Resources and Crop Evolution, 2021, 68, 865-883.	0.8	2
108	Geographic Patterns of Genetic Variation among Cacao (Theobroma cacao L.) Populations Based on Chloroplast Markers. Diversity, 2021, 13, 249.	0.7	2

#	Article	IF	CITATIONS
109	Comparative Genomics Analysis of Repetitive Elements in Ten Gymnosperm Species: "Dark Repeatome― and Its Abundance in Conifer and Gnetum Species. Life, 2021, 11, 1234.	1.1	2
110	Mechanical stress effects on transcriptional regulation of genes encoding microtubule- and actin-associated proteins. Physiology and Molecular Biology of Plants, 2022, 28, 17-30.	1.4	2
111	Genetic diversity and parentage analysis of aspen demes. New Forests, 2016, 47, 143-162.	0.7	1
112	Seven-Cluster Structure of Larch Chloroplast Genome. Journal of Siberian Federal University - Biology, 2015, 8, 268-277.	0.2	1
113	Symmetry of Siberian Larch Transcriptome. Journal of Siberian Federal University - Biology, 2015, 8, 278-286.	0.2	1
114	Phylogenetic Relationships, Pathogenic Traits, and Wood-Destroying Properties of Porodaedalea niemelaei M. Fischer Isolated in the Northern Forest Limit of Larix gmelinii Open Woodlands in the Permafrost Area. Journal of Siberian Federal University - Biology, 0, , 1-19.	0.2	1
115	Response of Poplar Leaf Transcriptome to Changed Management and Environmental Conditions in Pure and Mixed with Black Locust Stands. Forests, 2022, 13, 147.	0.9	1
116	Symmetry in a Four-Cluster Triangle Structure of the Siberian Stone Pine (Pinus sibirica Du Tour) Transcriptome. Proceedings (mdpi), 2018, 2, 55.	0.2	0
117	Symmetry in the Transcriptome and Genome Sequences of Siberian Larch (Larix sibirica Ledeb.). Proceedings (mdpi), 2018, 2, .	0.2	0
118	The role of jasmonate signaling pathway in plant's flowering genes response to ionizing radiation. Visnik Ukrains Kogo Tovaristva Genetikiv I Selekcioneriv, 2019, 17, 45-50.	0.4	0