Nabeel Ali Bakr

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6615907/nabeel-ali-bakr-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

34	457	10	21
papers	citations	h-index	g-index
37 ext. papers	503 ext. citations	3.1 avg, IF	3.36 L-index

#	Paper	IF	Citations
34	Synthesis, Characterization and H2S Gas Sensor Performance of Hydrothermal Prepared SnO2 Films Nanostructures. <i>IOP Conference Series: Earth and Environmental Science</i> , 2021 , 790, 012085	0.3	
33	Morphological, Magnetic, Optical, Surface Potential, and H2S Gas Sensing Behavior of Polypyrrole Nanofibers. <i>Journal of Electronic Materials</i> , 2021 , 50, 2716-2724	1.9	1
32	Improve the Performance of Porous Silicon for solar application by the embedding of Lithium Oxide nanoparticle. <i>IOP Conference Series: Materials Science and Engineering</i> , 2020 , 928, 072142	0.4	1
31	Structural and optical properties of Cu2ZnSnS4 thin films fabricated by chemical spray pyrolysis 2020 ,		2
30	Synthesis and characterization of MAPbI3 thin film and its application in C-Si/perovskite tandem solar cell. <i>Journal of Materials Science: Materials in Electronics</i> , 2020 , 31, 16199-16207	2.1	6
29	H2S gas sensitivity of PAni nano fibers synthesized by hydrothermal method. <i>Journal of Materials Science: Materials in Electronics</i> , 2018 , 29, 11208-11214	2.1	7
28	Fabrication and Efficiency Enhancement of Z907 Dye Sensitized Solar Cell Using Gold Nanoparticles. <i>Journal of Advanced Physics</i> , 2017 , 6, 370-374		7
27	Influence of Thiourea Concentration on Some Physical Properties of Chemically Sprayed Cu₂ZnSnS₄ Thin Films. <i>International Journal of Materials Science and Applications</i> , 2016 , 5, 261	0.3	7
26	Highly efficient photo-degradation of methyl blue and band gap shift of SnS nanoparticles under different sonication frequencies. <i>Materials Science in Semiconductor Processing</i> , 2015 , 32, 172-178	4.3	78
25	Facile synthesis of different morphologies of Te-doped ZnO nanostructures. <i>Ceramics International</i> , 2014 , 40, 7737-7743	5.1	30
24	Electrodeposition of CuInO nanocomposites: Effect of growth conditions on morphologies and surface properties. <i>Materials Science in Semiconductor Processing</i> , 2014 , 27, 507-514	4.3	3
23	Determination of the optical parameters of a-Si:H thin films deposited by hot wiredhemical vapour deposition technique using transmission spectrum only 2011 , 76, 519-531		97
22	Influence of deposition pressure on structural, optical and electrical properties of nc-Si:H films deposited by HW-CVD. <i>Journal of Physics and Chemistry of Solids</i> , 2011 , 72, 685-691	3.9	16
21	Role of argon in hot wire chemical vapor deposition of hydrogenated nanocrystalline silicon thin films. <i>Thin Solid Films</i> , 2011 , 519, 3501-3508	2.2	6
20	Influence of Argon Flow on Deposition of Hydrogenated Nanocrystalline Silicon (nc-Si:H) Films by Plasma Chemical Vapor Deposition. <i>Journal of Nano Research</i> , 2009 , 5, 185-191	1	1
19	Influence of hydrogen dilution on structural, electrical and optical properties of hydrogenated nanocrystalline silicon (nc-Si:H) thin films prepared by plasma enhanced chemical vapour deposition (PE-CVD). <i>Solar Energy Materials and Solar Cells</i> , 2008 , 92, 1217-1223	6.4	77
18	Deposition of hydrogenated amorphous silicon (a-Si:H) films by hot-wire chemical vapor deposition (HW-CVD) method: Role of substrate temperature. <i>Solar Energy Materials and Solar Cells</i> , 2007 , 91, 714-	72 0	20

LIST OF PUBLICATIONS

Refractive index, extinction coefficient and DC conductivity of amorphous arsenic triselenide thin film doped with silver. <i>Thin Solid Films</i> , 2003 , 424, 296-302	2.2	10
Condensation process and physical properties of GeSe(In, Cd) thin films prepared by semi-closed space technique. <i>Journal of Materials Processing Technology</i> , 2003 , 132, 138-142	5.3	5
Characterization of ethylenelinylalcohol copolymer doped with chlorophyll. <i>Polymer Testing</i> , 2002 , 21, 571-576	4.5	4
Characterization of a CdZnTe/CdTe heterostructure system prepared by Zn diffusion into a CdTe thin film. <i>Journal of Crystal Growth</i> , 2002 , 235, 217-223	1.6	10
Photovoltaic effect in polymerBemiconductor heterojunction. <i>Journal of Applied Polymer Science</i> , 2001 , 79, 2425-2430	2.9	
Optical and thermal spectroscopic studies of luminescent dye doped poly(methyl methacrylate) as solar concentrator. <i>Journal of Applied Polymer Science</i> , 1999 , 74, 3316-3323	2.9	24
Mechanical and optical investigations of some polymer blends containing PVC. <i>Polymer Testing</i> , 1996 , 15, 281-289	4.5	5
Optical and electrical conductivity investigations of Fe3+-(acrylonitrile-butadiene-styrene) terpolymer complex systems. <i>Journal of Materials Research</i> , 1995 , 10, 2653-2658	2.5	11
Microstructure and mechanical properties studies of poly(vinyl alcohol)lead salts complexes. Journal of Applied Polymer Science, 1995, 55, 415-420	2.9	4
Characteristics of CdSe: In-ZnTe: As thin film heterojunctions prepared by semi-closed space technique. <i>Journal of Crystal Growth</i> , 1994 , 142, 298-302	1.6	4
Thermally stimulated current of iodine-doped acrylonitrileButadieneBtyrene thin films. <i>Journal of Applied Polymer Science</i> , 1993 , 47, 2143-2147	2.9	4
Applications of the virtual charge model to the electronic structures and spectra of benzaldehyde and acetophenone. <i>Monatshefte Fil Chemie</i> , 1991 , 122, 349-358	1.4	1
The transport properties of battery carbon. <i>Carbon</i> , 1990 , 28, 231-232	10.4	
Relaxation phenomena and electrical conductivity of some polymeric films. <i>European Polymer Journal</i> , 1982 , 18, 975-980	5.2	13
The electrical and mechanical properties of Cadmium chloride reinforced PVA:PVP blend films. <i>Papers in Physics</i> ,12, 120006		О
The influence of Deposition Temperature on the Properties of Chemically Sprayed Nanostructured Cu2CdSnS4 Thin Films. <i>International Research Journal of Science and Technology</i> ,149-155		1
Synthesis and Characterization of Chemically Sprayed Cu2FeSnS4 (CFTS) Thin Films: The Effect of Substrate Temperature. <i>Materials Science Forum</i> ,1039, 434-441	0.4	1
	Condensation process and physical properties of GeSe(In, Cd) thin films prepared by semi-closed space technique. <i>Journal of Materials Processing Technology,</i> 2003, 132, 138-142 Characterization of ethylene@inylalcohol copolymer doped with chlorophyll. <i>Polymer Testing,</i> 2002, 21, 571-576 Characterization of a CdZnTe/CdTe heterostructure system prepared by Zn diffusion into a CdTe thin film. <i>Journal of Crystal Growth,</i> 2002, 235, 217-223 Photovoltaic effect in polymerBemiconductor heterojunction. <i>Journal of Applied Polymer Science,</i> 2001, 79, 2425-2430 Optical and thermal spectroscopic studies of luminescent dye doped poly(methyl methacrylate) as solar concentrator. <i>Journal of Applied Polymer Science,</i> 1999, 74, 3316-3323 Mechanical and optical investigations of some polymer blends containing PVC. <i>Polymer Testing,</i> 1996, 15, 281-289 Optical and electrical conductivity investigations of Fe3+-(acrylonitrile-butadiene-styrene) terpolymer complex systems. <i>Journal of Materials Research,</i> 1995, 10, 2653-2658 Microstructure and mechanical properties studies of poly(vinyl alcohol)læad salts complexes. <i>Journal of Applied Polymer Science,</i> 1995, 55, 415-420 Characteristics of CdSe: In-ZnTe: As thin film heterojunctions prepared by semi-closed space technique. <i>Journal of Crystal Growth,</i> 1994, 142, 298-302 Thermally stimulated current of iodine-doped acrylonitrile@utadiene@tyrene thin films. <i>Journal of Applied Polymer Science,</i> 1993, 47, 2143-2147 Applications of the virtual charge model to the electronic structures and spectra of benzaldehyde and acetophenone. <i>Monatshefte Fa Chemie,</i> 1991, 122, 349-358 The transport properties of battery carbon. <i>Carbon,</i> 1990, 28, 231-232 Relaxation phenomena and electrical conductivity of some polymeric films. <i>European Polymer Journal,</i> 1982, 18, 975-980 The electrical and mechanical properties of Cadmium chloride reinforced PVA:PVP blend films. <i>Papers in Physics,</i> 12, 120006	film doped with silver. Thin Solid Films, 2003, 424, 296-302 Condensation process and physical properties of GeSe(In, Cd) thin films prepared by semi-closed space technique. Journal of Materials Processing Technology, 2003, 132, 138-142 Characterization of ethylene\(\text{Univalence} \) in the transport of GeSe(In, Cd) thin films prepared by semi-closed space technique. Journal of Materials Processing Technology, 2003, 132, 138-142 Characterization of a CdZnTe/CdTe heterostructure system prepared by Zn diffusion into a CdTe thin film. Journal of Cystal Growth, 2002, 235, 217-223 Photovoltaic effect in polymer\(\text{Semiconductor} \) heterostructure system prepared by Zn diffusion into a CdTe thin film. Journal of Cystal Growth, 2002, 235, 217-223 Photovoltaic effect in polymer\(\text{Semiconductor} \) heterostructure system prepared by Zn diffusion into a CdTe thin film. Journal of Cystal Growth, 2002, 235, 217-223 Photovoltaic effect in polymer\(\text{Semiconductor} \) heterostructure systems. Journal of Applied Polymer Science, 1999, 74, 3316-3323 Mechanical and optical investigations of some polymer blends containing PVC. Polymer Testing, 1996, 15, 281-289 Optical and electrical conductivity investigations of Fe3+-(acrytonitrile-butadiene-styrene) terpolymer complex systems. Journal of Materials Research, 1995, 10, 2653-2658 Microstructure and mechanical properties studies of poly(vinyl alcohol)(bad salts complexes. Journal of Applied Polymer Science, 1995, 55, 415-420 Characteristics of CdSe: In-ZnTe: As thin film heterojunctions prepared by semi-closed space technique. Journal of Cystal Growth, 1994, 142, 298-302 Thermally stimulated current of iodine-doped acrytonitrileButadieneBtyrene thin films. Journal of Applied Polymer Science, 1993, 47, 2143-2147 Applications of the virtual charge model to the electronic structures and spectra of benzaldehyde and acetophenone. Monatshefte Fil Chemie, 1991, 122, 349-358 The transport properties of battery carbon. Carbon, 1990, 28, 231-232 10-4 Rel