
David Rotermund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6615857/publications.pdf Version: 2024-02-01

DAVID ROTERMIND

#	Article	IF	CITATIONS
1	Accelerating Spike-by-Spike Neural Networks on FPGA With Hybrid Custom Floating-Point and Logarithmic Dot-Product Approximation. IEEE Access, 2021, 9, 80603-80620.	2.6	5
2	Accelerator Framework of Spike-By-Spike Neural Networks for Inference and Incremental Learning in Embedded Systems. , 2020, , .		1
3	Open Hardware for neuro-prosthesis research: A study about a closed-loop multi-channel system for electrical surface stimulations and measurements. HardwareX, 2019, 6, e00078.	1.1	6
4	Back-Propagation Learning in Deep Spike-By-Spike Networks. Frontiers in Computational Neuroscience, 2019, 13, 55.	1.2	10
5	Attention Selectively Gates Afferent Signal Transmission to Area V4. Journal of Neuroscience, 2018, 38, 3441-3452.	1.7	25
6	Implications for a Wireless, External Device System to Study Electrocorticography. Sensors, 2017, 17, 761.	2.1	4
7	Marginally subcritical dynamics explain enhanced stimulus discriminability under attention. Frontiers in Systems Neuroscience, 2014, 8, 151.	1.2	43
8	Development of a Fully Implantable Recording System for ECoG Signals. , 2013, , .		11
9	Toward High Performance, Weakly Invasive Brain Computer Interfaces Using Selective Visual Attention. Journal of Neuroscience, 2013, 33, 6001-6011.	1.7	23
10	Compressed sensing with stochastic spikes. BMC Neuroscience, 2011, 12, .	0.8	0
11	High-performance classification of contour percepts from EEG recordings. BMC Neuroscience, 2011, 12, .	0.8	1
12	Attention Improves Object Representation in Visual Cortical Field Potentials. Journal of Neuroscience, 2009, 29, 10120-10130.	1.7	30
13	Phase differences in local field potentials from macaque monkey area V4 predict attentional state in single trials with 99.6% accuracy. BMC Neuroscience, 2009, 10, .	0.8	0
14	Enhancing information processing by synchronization. BMC Neuroscience, 2009, 10, .	0.8	0
15	High EEG-gamma-power codes perceptual states of ambiguous motion. BMC Neuroscience, 2009, 10, .	0.8	0
16	Efficient Computation Based on Stochastic Spikes. Neural Computation, 2007, 19, 1313-1343.	1.3	11
17	Towards On-line Adaptation of Neuro-prostheses with Neuronal Evaluation Signals. Biological Cybernetics, 2006, 95, 243-257.	0.6	15
18	Second Order Phase Transition in Neural Rate Coding: Binary Encoding is Optimal for Rapid Signal Transmission. Physical Review Letters, 2003, 90, 088104.	2.9	24

#	Article	IF	CITATIONS
19	Optimal Short-Term Population Coding: When Fisher Information Fails. Neural Computation, 2002, 14, 2317-2351.	1.3	94
20	Decoding perceptual states of ambiguous motion from high gamma EEG. Frontiers in Computational Neuroscience, 0, 3, .	1.2	0