List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6615811/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
3	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq1 1 0.784314 rgBT /C	Dverlock 10 4.3	O Tf 50 662 T 1,480
4	Morphological classification of plant cell deaths. Cell Death and Differentiation, 2011, 18, 1241-1246.	5.0	481
5	Developmental pathways of somatic embryogenesis. Plant Cell, Tissue and Organ Culture, 2002, 69, 233-249.	1.2	470
6	Metacaspases. Cell Death and Differentiation, 2011, 18, 1279-1288.	5.0	292
7	Cysteine protease mcII-Pa executes programmed cell death during plant embryogenesis. Proceedings of the United States of America, 2005, 102, 14463-14468.	3.3	228
8	Developmental pathway of somatic embryogenesis in Picea abies as revealed by timeâ€lapse tracking. Journal of Experimental Botany, 2000, 51, 249-264.	2.4	192
9	Tudor staphylococcal nuclease is an evolutionarily conserved component of the programmed cell death degradome. Nature Cell Biology, 2009, 11, 1347-1354.	4.6	192
10	Metacaspase-dependent programmed cell death is essential for plant embryogenesis. Current Biology, 2004, 14, R339-R340.	1.8	187
11	Autophagy and metacaspase determine the mode of cell death in plants. Journal of Cell Biology, 2013, 203, 917-927.	2.3	142
12	Autophagy as initiator or executioner of cell death. Trends in Plant Science, 2014, 19, 692-697.	4.3	137
13	VEIDase is a principal caspase-like activity involved in plant programmed cell death and essential for embryonic pattern formation. Cell Death and Differentiation, 2004, 11, 175-182.	5.0	130
14	Assessment of the integral membrane protein topology in living cells. Plant Journal, 2006, 46, 145-154.	2.8	125
15	Somatic embryogenesis: life and death processes during apical–basal patterning. Journal of Experimental Botany, 2014, 65, 1343-1360.	2.4	124
16	Re-organisation of the cytoskeleton during developmental programmed cell death inPicea abiesembryos. Plant Journal, 2003, 33, 813-824.	2.8	122
17	Transcriptional stimulation of rate-limiting components of the autophagic pathway improves plant fitness. Journal of Experimental Botany, 2018, 69, 1415-1432.	2.4	120
18	Tudor Staphylococcal Nuclease Links Formation of Stress Granules and Processing Bodies with mRNA Catabolism in Arabidopsis. Plant Cell, 2015, 27, 926-943.	3.1	114

#	Article	IF	CITATIONS
19	Programmed Cell Death in Plant Embryogenesis. Current Topics in Developmental Biology, 2005, 67, 135-179.	1.0	109
20	Bacteria Exploit Autophagy for Proteasome Degradation and Enhanced Virulence in Plants. Plant Cell, 2018, 30, 668-685.	3.1	106
21	Autophagy-related approaches for improving nutrient use efficiency and crop yield protection. Journal of Experimental Botany, 2018, 69, 1335-1353.	2.4	97
22	Programmed cell death eliminates all but one embryo in a polyembryonic plant seed. Cell Death and Differentiation, 2002, 9, 1057-1062.	5.0	94
23	A key developmental switch during Norway spruce somatic embryogenesis is induced by withdrawal of growth regulators and is associated with cell death and extracellular acidification. Biotechnology and Bioengineering, 2002, 77, 658-667.	1.7	90
24	A Bipartite Molecular Module Controls Cell Death Activation in the Basal Cell Lineage of Plant Embryos. PLoS Biology, 2013, 11, e1001655.	2.6	87
25	Polyethylene glycol promotes maturation but inhibits further development of Picea abies somatic embryos. Physiologia Plantarum, 1998, 104, 211-224.	2.6	84
26	Metacaspases versus caspases in development and cell fate regulation. Cell Death and Differentiation, 2017, 24, 1314-1325.	5.0	75
27	Variation in transcript abundance during somatic embryogenesis in gymnosperms. Tree Physiology, 2004, 24, 1073-1085.	1.4	71
28	Classification and Nomenclature of Metacaspases and Paracaspases: No More Confusion with Caspases. Molecular Cell, 2020, 77, 927-929.	4.5	71
29	Tudor staphylococcal nuclease: biochemistry and functions. Cell Death and Differentiation, 2016, 23, 1739-1748.	5.0	62
30	Green death: revealing programmed cell death in plants. Cell Death and Differentiation, 2011, 18, 1239-1240.	5.0	55
31	Autophagy mediates caloric restrictionâ€induced lifespan extension in <i>Arabidopsis</i> . Aging Cell, 2013, 12, 327-329.	3.0	49
32	Developmental and genetic variation in nuclear microsatellite stability during somatic embryogenesis in pine. Journal of Experimental Botany, 2006, 58, 687-698.	2.4	47
33	Heterologous Array Analysis in Pinaceae: Hybridization ofPinus taedacDNA Arrays with cDNA from Needles and Embryogenic Cultures ofP. taeda,P. sylvestrisorPicea abies. Comparative and Functional Genomics, 2002, 3, 306-318.	2.0	45
34	Plant autophagy: mechanisms and functions. Journal of Experimental Botany, 2018, 69, 1281-1285.	2.4	45
35	Up, down and up again is a signature global gene expression pattern at the beginning of gymnosperm embryogenesis. Gene Expression Patterns, 2003, 3, 83-91.	0.3	44
36	The Level of Free Intracellular Zinc Mediates Programmed Cell Death/Cell Survival Decisions in Plant Embryos Â. Plant Physiology, 2008, 147, 1158-1167.	2.3	42

#	Article	IF	CITATIONS
37	The Caspase-Related Protease Separase (EXTRA SPINDLE POLES) Regulates Cell Polarity and Cytokinesis in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 2171-2186.	3.1	40
38	Separase Promotes Microtubule Polymerization by Activating CENP-E-Related Kinesin Kin7. Developmental Cell, 2016, 37, 350-361.	3.1	40
39	Impact of salt stress, cell death, and autophagy on peroxisomes: quantitative and morphological analyses using small fluorescent probe N-BODIPY. Scientific Reports, 2017, 7, 39069.	1.6	40
40	Expression patterns of two glutamine synthetase genes in zygotic and somatic pine embryos support specific roles in nitrogen metabolism during embryogenesis. New Phytologist, 2006, 169, 35-44.	3.5	39
41	Developmental regulation of a VEIDase caspase-like proteolytic activity in barley caryopsis. Journal of Experimental Botany, 2006, 57, 3747-3753.	2.4	38
42	Oil crops for the future. Current Opinion in Plant Biology, 2020, 56, 181-189.	3.5	38
43	Tudor staphylococcal nuclease is a docking platform for stress granule components and is essential for SnRK1 activation in <i>Arabidopsis</i> . EMBO Journal, 2021, 40, e105043.	3.5	37
44	Vacuolar cell death in plants. Autophagy, 2014, 10, 928-929.	4.3	35
45	Propagation of Norway spruce via somatic embryogenesis. Plant Cell, Tissue and Organ Culture, 2005, 81, 323-329.	1.2	29
46	KNOTTED1-like homeobox genes of a gymnosperm, Norway spruce, expressed during somatic embryogenesis. Plant Physiology and Biochemistry, 2002, 40, 837-843.	2.8	28
47	Limited and digestive proteolysis: crosstalk between evolutionary conserved pathways. New Phytologist, 2017, 215, 958-964.	3.5	27
48	High stability of nuclear microsatellite loci during the early stages of somatic embryogenesis in Norway spruce. Tree Physiology, 2004, 24, 1181-1186.	1.4	25
49	Autophagy in turnover of lipid stores: trans-kingdom comparison. Journal of Experimental Botany, 2018, 69, 1301-1311.	2.4	25
50	Autophagy and Cell-Death Proteases in Plants: Two Wheels of a Funeral Cart. Autophagy, 2007, 3, 136-138.	4.3	24
51	Chemical Screening Pipeline for Identification of Specific Plant Autophagy Modulators. Plant Physiology, 2019, 181, 855-866.	2.3	23
52	Early selection improves clonal performance and reduces intraclonal variation of Norway spruce plants propagated by somatic embryogenesis. Tree Physiology, 2003, 23, 211-216.	1.4	21
53	A pronounced synergistic effect of abscisic acid and 6-benzyladenine on Norway spruce (Picea abies L.) Tj ETQq	1 1 0.7843 2.8	14 rgBT /Ove
54	Aspasing Out Metacaspases and Caspases: Proteases of Many Trades. Science Signaling, 2010, 3, pe48.	1.6	17

#	Article	IF	CITATIONS
55	Separases: biochemistry and function. Physiologia Plantarum, 2012, 145, 67-76.	2.6	17
56	Transcriptome analysis of embryonic domains in Norway spruce reveals potential regulators of suspensor cell death. PLoS ONE, 2018, 13, e0192945.	1.1	17
57	Genetic variation in microsatellite stability of somatic embryo plants of <i>Picea abies</i> : A case study using six unrelated full-sib families. Scandinavian Journal of Forest Research, 2008, 23, 2-11.	0.5	16
58	Influence of Nitrogen Balance of Culture Medium on Norway Spruce [Picea abies (L.) Karst] Somatic Polyembryogenesis: High Frequency Establishment of Embryonal-Suspensor Mass Lines from Mature Zygotic Embryos. Journal of Plant Physiology, 1993, 142, 735-741.	1.6	15
59	Apoptosis is not conserved in plants as revealed by critical examination of a model for plant apoptosis-like cell death. BMC Biology, 2021, 19, 100.	1.7	15
60	Suppression of Metacaspase- and Autophagy-Dependent Cell Death Improves Stress-Induced Microspore Embryogenesis in <i>Brassica napus</i> . Plant and Cell Physiology, 2021, 61, 2097-2110.	1.5	14
61	Chlamydomonas proteases: classification, phylogeny, and molecular mechanisms. Journal of Experimental Botany, 2021, 72, 7680-7693.	2.4	12
62	Detection and Measurement of Necrosis in Plants. Methods in Molecular Biology, 2013, 1004, 229-248.	0.4	11
63	<i><scp>EXTRA SPINDLE POLES</scp></i> (Separase) controls anisotropic cell expansion in Norway spruce (<i>Picea abies</i>) embryos independently of its role in anaphase progression. New Phytologist, 2016, 212, 232-243.	3.5	11
64	Arabidopsis homologue of Scc4/MAU2 is essential for plant embryogenesis. Journal of Cell Science, 2017, 130, 1051-1063.	1.2	10
65	Tudor Staphylococcal Nuclease plays two antagonistic roles in RNA metabolism under stress. Plant Signaling and Behavior, 2015, 10, e1071005.	1.2	9
66	Plant Metacaspase Activation and Activity. Methods in Molecular Biology, 2014, 1133, 237-253.	0.4	7
67	Subcellular Localization of Acyl-CoA: Lysophosphatidylethanolamine Acyltransferases (LPEATs) and the Effects of Knocking-Out and Overexpression of Their Genes on Autophagy Markers Level and Life Span of A. thaliana. International Journal of Molecular Sciences, 2021, 22, 3006.	1.8	6
68	The Life and Death Signalling Underlying Cell Fate Determination During Somatic Embryogenesis. Plant Cell Monographs, 2014, , 131-178.	0.4	6
69	Detection of Programmed Cell Death in Plant Embryos. Methods in Molecular Biology, 2008, 427, 173-179.	0.4	5
70	Characterization of Cytokinetic Mutants Using Small Fluorescent Probes. Methods in Molecular Biology, 2016, 1370, 199-208.	0.4	3
71	Expression and Purification of the Type II Metacaspase from a Unicellular Green Alga Chlamydomonas reinhardtii. Methods in Molecular Biology, 2022, 2447, 13-20.	0.4	3

Propagation of Norway spruce via somatic embryogenesis. , 2005, , 283-293.

2

#	Article	IF	CITATIONS
73	Genotypic and media factors affecting stabilization of polyembryogenic cultures in norway spruce (Picea abies (L.) Karst.). Plant Cell Reports, 1995, 14, 389-92.	2.8	1
74	The <i>Arabidopsis</i> homolog of Scc4/MAU2 is essential for embryogenesis. Development (Cambridge), 2017, 144, e1.2-e1.2.	1.2	0