List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6615606/publications.pdf Version: 2024-02-01

		257450	243625
151	2,419	24	44
papers	citations	h-index	g-index
151	151	151	1505
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Precise Measurements and their Analysis of GAWBS-Induced Depolarization Noise in Multi-Core Fiber for Digital Coherent Transmission. IEICE Transactions on Communications, 2022, E105.B, 151-158.	0.7	1
2	Experiments on an AM Mode-Locked Laser as an Arbitrary Optical Function Generator. IEEE Journal of Quantum Electronics, 2022, 58, 1-18.	1.9	1
3	Experiments on an FM Mode-Locked Laser as an Arbitrary Optical Function Generator. IEEE Journal of Quantum Electronics, 2022, 58, 1-16.	1.9	3
4	Broadband injection-locked homodyne receiver for digital coherent transmission using a low Q Fabry-Perot LD. Optics Express, 2022, 30, 13345.	3.4	3
5	Software-Defined Fiber Optic Communications for Ultrahigh-Speed Optical Pulse Transmission Systems. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-10.	2.9	2
6	10 Tbit/s QAM Quantum Noise Stream Cipher Coherent Transmission Over 160 Km. Journal of Lightwave Technology, 2021, 39, 1056-1063.	4.6	18
7	10 Channel WDM 80 Gbit/s/ch, 256 QAM Bi-Directional Coherent Transmission for a High Capacity Next-Generation Mobile Fronthaul. Journal of Lightwave Technology, 2021, 39, 1289-1295.	4.6	12
8	Chromatic dispersion dependence of GAWBS phase noise compensation with pilot tone. Optics Express, 2021, 29, 10676.	3.4	2
9	Spectrally efficient pilot tone-based compensation of inter-channel cross-phase modulation noise in a WDM coherent transmission using injection locking. Optics Express, 2021, 29, 1454.	3.4	4
10	Single-Channel 1.28 Tbit/s Optical Nyquist Pulse Transmission over 3000 km with Roll-off Factor Optimization. , 2021, , .		1
11	Experimental demonstration of distortion mitigation in 15 Tbit/s OTDM transmission using a cognitive dynamic system. , 2021, , .		1
12	GAWBS Noise Correlation Between Cores in Four-Core Fiber. , 2021, , .		0
13	Broadband Dynamic Injection-Locking Performance of Fabry-Perot LD and Its Application to Coherent Homodyne Receiver. , 2021, , .		Ο
14	Ultrahigh-speed Nyquist pulse transmission beyond 10 Tbit/s. IEEE Journal of Selected Topics in Quantum Electronics, 2020, , 1-1.	2.9	3
15	Chromatic Dispersion Dependence of GAWBS Noise. , 2020, , .		Ο
16	12.8 Tbit/s (10 ch, 1.28 Tbit/s) OTDM-WDM Transmission of 320 Gbaud PDM-DQPSK Optical Nyquist Pulses over 1500 km. , 2020, , .		4
17	Low-Nonlinearity, Dispersion-Compensated Transmission Line with a Chirped Fiber Bragg Grating and Its Application to Ultrahigh-Speed Coherent Nyquist Pulse Transmission. , 2020, , .		2
18	Evaluation of Systematic Errors in the Compact Absolute Gravimeter TAG-1 for Network Monitoring of Volcanic Activities. International Association of Geodesy Symposia, 2020, , 1.	0.4	0

#	Article	IF	CITATIONS
19	Theoretical and experimental analyses of GAWBS phase noise in various optical fibers for digital coherent transmission. Optics Express, 2020, 28, 2873.	3.4	20
20	GAWBS phase noise characteristics in multi-core fibers for digital coherent transmission. Optics Express, 2020, 28, 23012.	3.4	8
21	Injection-locked 256 QAM WDM coherent transmissions in the C- and L-bands. Optics Express, 2020, 28, 34665.	3.4	5
22	Precise measurements and their analysis of GAWBS-induced depolarization noise in various optical fibers for digital coherent transmission. Optics Express, 2020, 28, 34422.	3.4	9
23	10 Tbit/s QAM Quantum Noise Stream Cipher Coherent Transmission over 160 km. , 2020, , .		6
24	Experimental and Theoretical Analyses of GAWBS Phase Noise in Multi-core Fiber for Digital Coherent Transmission. , 2020, , .		1
25	Precise and Wideband Compensation of Inter-Channel Cross-Phase Modulation Noise in WDM Coherent Transmission Using Injection Locking. , 2020, , .		0
26	Numerical Investigation of Mutually Injection-Locked Semiconductor Lasers for Direct IQ-Signal Generation. IEEE Photonics Journal, 2019, 11, 1-11.	2.0	1
27	Wavelength-tunable sub-picosecond optical switch over entire C-band using nonlinear optical loop mirror. IEICE Electronics Express, 2019, 16, 20190664-20190664.	0.8	6
28	GAWBS Noise Characteristics in Digital Coherent Transmission in Various Optical Fibers. , 2019, , .		1
29	Sub-Picosecond Optical Switch over Entire C-Band by Using Nonlinear Optical Loop Mirror. , 2019, , .		Ο
30	Single-channel 153 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150â€km with a spectral efficiency of 83 bit/s/Hz. Optics Express, 2019, 27, 28952.	3.4	24
31	Suppression of large error floor in 1024 QAM digital coherent transmission by compensating for GAWBS phase noise. Optics Express, 2019, 27, 36691.	3.4	7
32	Dual-Polarization On-Line 256 and 512 QAM Digital Coherent Transmission. , 2019, , .		6
33	Single-Channel 10.2 Tbit/s PDM-DQPSK Nyquist Pulse Transmission over 300 km. , 2018, , .		Ο
34	50.4 Tbit/s, 128 QAM L-band WDM Injection-locked Coherent Transmission over 160 km with Spectral Efficiency of 10.5 bit/s/Hz. , 2018, , .		1
35	Reverse Phase Modulation Technique for GAWBS Noise Error Floor Elimination in 1024 QAM-160 km Digital Coherent Transmission. , 2018, , .		2
36	Single-Channel 7.68 Tbit/s, 64 QAM Coherent Nyquist Pulse Transmission over 150 km with a Spectral Efficiency of 9.7 bit/s/Hz. , 2018, , .		1

#	Article	IF	CITATIONS
37	Experimental and numerical comparison of probabilistically shaped 4096 QAM and a uniformly shaped 1024 QAM in all-Raman amplified 160 km transmission. Optics Express, 2018, 26, 3535.	3.4	24
38	Observation of guided acoustic-wave Brillouin scattering noise and its compensation in digital coherent optical fiber transmission. Optics Express, 2018, 26, 9165.	3.4	26
39	Single-channel 200 Gbit/s, 10 Gsymbol/s-1024 QAM injection-locked coherent transmission over 160 km with a pilot-assisted adaptive equalizer. Optics Express, 2018, 26, 17015.	3.4	12
40	Single-channel 768 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 97 bit/s/Hz. Optics Express, 2018, 26, 17418.	3.4	12
41	Single-channel 102 Tbit/s (256 Tbaud) optical Nyquist pulse transmission over 300 km. Optics Express, 2018, 26, 27221.	3.4	41
42	Injection-locked Homodyne Detection for Higher-order QAM Transmission. , 2018, , .		1
43	Secure Transmission using QAM Quantum Noise Stream Cipher with Continuous Variable QKD. , 2018, , .		5
44	4096 QAM (72 Gbit/s) Single-Carrier Coherent Optical Transmission with a Potential SE of 15.8 bit/s/Hz in All-Raman Amplified 160 km Fiber Link. , 2018, , .		13
45	Experimental and Numerical Comparison of Probabilistically-Shaped 4096 QAM and Uniformly-Shaped 1024 QAM in All-Raman Amplified 160 km Transmission. , 2018, , .		1
46	80 Gbit/s/ch, 256 QAM Digital Coherent Optical Transmission System with Injection-Locking for Next Generation Mobile Fronthaul Network. , 2017, , .		3
47	A 40 GHz, 770 fs regeneratively mode-locked erbium fiber laser operating at 1.6 Âμm. IEICE Electronics Express, 2017, 14, 20170829-20170829.	0.8	4
48	Single-channel 384 Tbit/s, 64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 106 bit/s/Hz. Optics Express, 2017, 25, 15199.	3.4	18
49	15μm, mode-hop-free full C-band wavelength tunable laser diode with a linewidth of 8 kHz and a RIN of â~'130 dB/Hz and its extension to the L-band. Optics Express, 2017, 25, 22113.	3.4	23
50	423 Tbit/s, 18 Gbaud 64 QAM WDM coherent transmission over 160 km in the C-band using an injection-locked homodyne receiver with a spectral efficiency of 9 bit/s/Hz. Optics Express, 2017, 25, 22726.	3.4	22
51	QAM Quantum Noise Stream Cipher Transmission Over 100 km With Continuous Variable Quantum Key Distribution. IEEE Journal of Quantum Electronics, 2017, 53, 1-16.	1.9	87
52	Fabrication of Multi Core Fiber by Using Slurry Casting Method. , 2017, , .		8
53	42.3-Tbit/s, 18-Gbaud 64QAM WDM Coherent Transmission of 160 km over Full C-band using an Injection Locking Technique with a Spectral Efficiency of 9 bit/s/Hz. , 2017, , .		3
54	Single-Carrier 216 Gbit/s, 12 Gsymbol/s 512 QAM Coherent Transmission over 160 km with		3

54 Injection-locked Homodyne Detection. , 2017, , .

#	Article	IF	CITATIONS
55	Single-channel 40 Gbit/s digital coherent QAM quantum noise stream cipher transmission over 480 km. Optics Express, 2016, 24, 652.	3.4	45
56	320 Gbit/s, 20 Gsymbol/s 256 QAM coherent transmission over 160 km by using injection-locked local oscillator. Optics Express, 2016, 24, 22088.	3.4	19
57	155 μm hydrogen cyanide optical frequency-stabilized and 10 GHz repetition-rate-stabilized mode-locked fiber laser. Optics Express, 2016, 24, 24287.	3.4	12
58	Single-channel 512 Tbit/s (128 Tbaud) DQPSK transmission over 300 km using non-coherent Nyquist pulses. Optics Express, 2016, 24, 29682.	3.4	11
59	295 mW output, frequency-stabilized erbium silica fiber laser with a linewidth of 5 kHz and a RIN of â^'120 dB/Hz. Optics Express, 2016, 24, 2737.	3.4	4
60	Fabrication of OH-free, single-mode fiber by using slurry casting and rod-in-tube method. IEICE Electronics Express, 2016, 13, 20151005-20151005.	0.8	4
61	Optical and wireless-integrated next-generation access network based on coherent technologies. Proceedings of SPIE, 2016, , .	0.8	2
62	Single-Channel 1.92 Tbit/s, 64 QAM Coherent Nyquist Orthogonal TDM Transmission With a Spectral Efficiency of 10.6 Bit/s/Hz. Journal of Lightwave Technology, 2016, 34, 768-775.	4.6	21
63	A 295 mW Output, HCN Frequency-Stabilized CW Erbium Silica Fiber Laser with a Linewidth of 5 kHz and a RIN of -120 dB/Hz. , 2016, , .		Ο
64	Mode Coupling Measurement at a Splice Point between Few-Mode Fibers Using a Synchronous Multi-Channel OTDR. , 2016, , .		5
65	A 0.95 ps, 10 GHz, 60 mW HCN Frequency-Stabilized and Mode-Locked Fiber Laser at 1.55 μm. , 2016, , .		1
66	448 Gbit/s, 32 Gbaud 128 QAM coherent transmission over 150 km with a potential spectral efficiency of 107 bit/s/Hz. Optics Express, 2015, 23, 28423.	3.4	4
67	80 Gbit/s, 256 QAM coherent transmission over 150 km with an injection-locked homodyne receiver. Optics Express, 2015, 23, 29174.	3.4	23
68	QAM quantum noise stream cipher transmission with extremely high security. , 2015, , .		1
69	256 Tbit/s/ch (640 Gbaud) polarization-multiplexed DQPSK non-coherent Nyquist pulse transmission over 525 km. Optics Express, 2015, 23, 30801.	3.4	6
70	An 116 W output, 6 kHz linewidth, single-polarization EDFA-MOPA system with a ^13C_2H_2 frequency stabilized fiber laser. Optics Express, 2015, 23, 1081.	3.4	9
71	2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 153 bit/s/Hz. Optics Express, 2015, 23, 4960.	3.4	184
72	1024 QAM, 7-core (60 Gbit/s x 7) fiber transmission over 55 km with an aggregate potential spectral efficiency of 109 bit/s/Hz. Optics Express, 2015, 23, 20760.	3.4	10

MASATO YOSHIDA

#	Article	IF	CITATIONS
73	Real-time 10 Gbit/s-16 QAM Quantum Stream Cipher Transmission over 320 km with FPGA-based Transmitter and Receiver. , 2015, , .		6
74	OH-free low loss single-mode fibre fabricated by slurry casting / rod-in-tube method. , 2014, , .		5
75	Adaptive 4~64 QAM real-time coherent optical transmission over 320 km with FPGA-based transmitter and receiver. Optics Express, 2014, 22, 16520.	3.4	10
76	Measurement of mode coupling distribution along a few-mode fiber using a synchronous multi-channel OTDR. Optics Express, 2014, 22, 31299.	3.4	50
77	120 Gbit/s injection-locked homodyne coherent transmission of polarization-multiplexed 64 QAM signals over 150 km. Optics Express, 2014, 22, 31310.	3.4	9
78	The Nyquist laser. Optica, 2014, 1, 15.	9.3	54
79	QAM quantum stream cipher using digital coherent optical transmission. Optics Express, 2014, 22, 4098.	3.4	59
80	Single-channel 192 Tbit/s, Pol-Mux-64 QAM coherent Nyquist pulse transmission over 150 km with a spectral efficiency of 75 bit/s/Hz. Optics Express, 2014, 22, 23776.	3.4	12
81	High-performance TDM demultiplexing of coherent Nyquist pulses using time-domain orthogonality. Optics Express, 2014, 22, 29456.	3.4	28
82	1.92 Tbit/s, 64 QAM Coherent Nyquist Pulse Transmission over 150 km with a Spectral Efficiency of 7.5 bit/s/Hz. , 2014, , .		2
83	Measurement of Mode Coupling Distribution Along a Few-Mode Fiber Using a Synchronous Multi-Channel OTDR. , 2014, , .		8
84	Real-time adaptive 4–64 QAM coherent optical transmission over 320 km with FPGA-based transmitter and receiver. , 2014, , .		1
85	2048 QAM (66 Gbit/s) Single-Carrier Coherent Optical Transmission over 150 km with a Potential SE of 15.3 bit/s/Hz. , 2014, , .		6
86	140 Gbit/s, 128 QAM LD-based Coherent Transmission over 150 km with an Injection-locked Homodyne Detection Technique. , 2014, , .		0
87	A Single-channel 40 Gbit/s Digital Coherent QAM Quantum Stream Cipher Transmission over 480 km. , 2014, , .		2
88	Extremely Higher-Order Modulation Formats. , 2013, , 297-336.		5
89	Second-Order PMD-Induced Crosstalk Between Polarization-Multiplexed Signals and Its Impact on Ultrashort Optical Pulse Transmission. Journal of Lightwave Technology, 2013, 31, 809-814.	4.6	11
90	400 Gbit/s 256 QAM OFDM Transmission over 720 km with a 14 bit/s/Hz Spectral Efficiency Using an Improved FDE Technique. , 2013, , .		2

#	Article	IF	CITATIONS
91	400 Gbit/s 256 QAM-OFDM transmission over 720 km with a 14 bit/s/Hz spectral efficiency by using high-resolution FDE. Optics Express, 2013, 21, 2632.	3.4	49
92	160 Gbit/s-300 km single-channel transmission in the 11 μm band with a precise GVD and slope compensation. Optics Express, 2013, 21, 4303.	3.4	2
93	A single-channel 192 Tbit/s, 64 QAM coherent optical pulse transmission over 150 km using frequency-domain equalization. Optics Express, 2013, 21, 22808.	3.4	13
94	A single-channel 128 Tbit/s-58 km transmission in the 11 1 /4m band with wideband GVD and slope compensation. Optics Express, 2013, 21, 29055.	3.4	1
95	Low-loss photonic crystal fiber fabricated by a slurry casting method. Optics Express, 2013, 21, 30500.	3.4	39
96	Detailed comparison between mode couplings along multi-core fibers and structural irregularities using a synchronous multi-channel OTDR system with a high dynamic range. Optics Express, 2013, 21, 29157.	3.4	4
97	A Single-Channel, 1.6 Tbit/s 32 QAM Coherent Pulse Transmission Over 150 km With RZ-CW Conversion and FDE Techniques. , 2013, , .		1
98	Generation of 9 W, 4 kHz linewidth 13C2H2 frequency-stabilized fiber laser output with core pumped erbium-doped amplifier. , 2013, , .		0
99	A Single-Channel 1.92 Tbit/s, 64 QAM Coherent Pulse OTDM Transmission over 150 km. , 2013, , .		0
100	1 Tbit/s 256 QAM-OFDM transmission over 560 km with 14.3 bit/s/Hz spectral efficiency. , 2013, , .		1
101	Ultrahigh-speed "orthogonal―TDM transmission with an optical Nyquist pulse train. Optics Express, 2012, 20, 1129.	3.4	233
102	Nondestructive measurement of mode couplings along a multi-core fiber using a synchronous multi-channel OTDR. Optics Express, 2012, 20, 12530.	3.4	37
103	Marked performance improvement of 256 QAM transmission using a digital back-propagation method. Optics Express, 2012, 20, 19815.	3.4	18
104	A 31 mW, 280 fs passively mode-locked fiber soliton laser using a high heat-resistant SWNT/P3HT saturable absorber coated with siloxane. Optics Express, 2012, 20, 23659.	3.4	5
105	1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km. Optics Express, 2012, 20, 12508.	3.4	96
106	512 QAM transmission over 240 km using frequency-domain equalization in a digital coherent receiver. Optics Express, 2012, 20, 23383.	3.4	17
107	Single-Carrier 800-Gb/s 32 RZ/QAM Coherent Transmission Over 225 km Employing a Novel RZ-CW Conversion Technique. IEEE Photonics Technology Letters, 2012, 24, 416-418.	2.5	9
108	A Cesium optical atomic clock with high optical frequency stability. IEICE Electronics Express, 2012, 9, 1496-1503.	0.8	0

#	Article	IF	CITATIONS
109	400 Gbit/s Frequency-Division-Multiplexed and Polarization-Multiplexed 256 QAM-OFDM Transmission over 400 km with a Spectral Efficiency of 14 bit/s/Hz. , 2012, , .		6
110	10 GHz, 11 ps optical pulse generation from a regeneratively mode-locked Yb fiber laser in the 11 μm band. Optics Express, 2011, 19, 25426.	3.4	16
111	256 Tbit/s/ch polarization-multiplexed DQPSK transmission over 300 km using time-domain optical Fourier transformation. Optics Express, 2011, 19, B567.	3.4	19
112	Novel RZ-CW conversion scheme for ultra multi-level, high-speed coherent OTDM transmission. Optics Express, 2011, 19, B574.	3.4	20
113	Real-time FPGA-based Coherent Optical Receiver for 1 Gsymbol/s, 64 QAM Transmission. , 2011, , .		6
114	256 QAM Digital Coherent Optical Transmission Using Raman Amplifiers. IEICE Transactions on Communications, 2011, E94-B, 417-424.	0.7	3
115	Optical frequency-tunable Cs atomic clock with a 9.19GHz mode-hop-free fiber laser. IEICE Electronics Express, 2010, 7, 1652-1658.	0.8	1
116	256 QAM (64 Gbit/s) Coherent Optical Transmission over 160 km with an Optical Bandwidth of 5.4 GHz. , 2010, , .		16
117	140 Gbit/s Coherent Optical Transmission over 150 km with a 10 Gsymbol/s Polarization-Multiplexed 128 QAM Signal. , 2010, , .		6
118	Single-Channel 400 Gbit/s, OTDM-32 RZ/QAM Coherent Transmission Over 225 km Using an Optical Phase-Locked Loop Technique. , 2010, , .		0
119	60Gbit/s 64 QAM-OFDM coherent optical transmission with a 5.3GHz bandwidth. IEICE Electronics Express, 2010, 7, 1163-1168.	0.8	3
120	512 QAM (54 Gbit/s) coherent optical transmission over 150 km with an optical bandwidth of 4.1 GHz. , 2010, , .		31
121	256-QAM (64 Gb/s) Coherent Optical Transmission Over 160 km With an Optical Bandwidth of 5.4 GHz. IEEE Photonics Technology Letters, 2010, 22, 185-187.	2.5	53
122	A 10-GHz Optoelectronic Oscillator at 1.1 \$mu\$m Using a Single-Mode VCSEL and a Photonic Crystal Fiber. IEEE Photonics Technology Letters, 2010, 22, 293-295.	2.5	67
123	Single-Channel 400-Gb/s OTDM-32 RZ/QAM Coherent Transmission Over 225 km Using an Optical Phase-Locked Loop Technique. IEEE Photonics Technology Letters, 2010, 22, 562-564.	2.5	19
124	Optical Frequency-Tunable Cs Atomic Clock with a Mode-Hop-Free Fiber Laser. , 2010, , .		0
125	A 10 GHz Opto-electronic Oscillator at 1.1 Âμm Using a Gain-Switched InGaAs VCSEL and a Photonic Crystal Fiber. , 2010, , .		0
126	10-GHz 11.5-ps Pulse Generation From a Single-Mode Gain-Switched InGaAs VCSEL at 1.1 \$mu\$m. IEEE Photonics Technology Letters, 2009, 21, 1704-1706.	2.5	5

#	Article	IF	CITATIONS
127	10Gbit/s photonic crystal fiber transmissions with 1.1.MU.m directly-modulated single-mode VCSEL. IEICE Electronics Express, 2009, 6, 1615-1620.	0.8	5
128	Delivery of an ultrastable Cs optical atomic clock using a JGN II optical test bed. , 2009, , .		0
129	C2H2 absolutely optical frequency-stabilized and 40 GHz repetition-rate-stabilized, regeneratively mode-locked picosecond erbium fiber laser at 1.53 Âμm. , 2009, , .		0
130	A \$lambda/4\$-Shifted Distributed-Feedback Laser Diode With a Fiber Ring Cavity Configuration Having an OSNR of 85 dB and a Linewidth of 7 kHz. IEEE Photonics Technology Letters, 2008, 20, 1578-1580.	2.5	5
131	Scheme for independently stabilizing the repetition rate and optical frequency of a laser using a regenerative mode-locking technique. Optics Letters, 2008, 33, 1059.	3.3	16
132	C_2H_2 absolutely optical frequency-stabilized and 40 GHz repetition-rate-stabilized, regeneratively mode-locked picosecond erbium fiber laser at 153 1¼m. Optics Letters, 2008, 33, 2641.	3.3	11
133	64 and 128 coherent QAM optical transmission over 150 km using frequency-stabilized laser and heterodyne PLL detection. Optics Express, 2008, 16, 829.	3.4	53
134	Polarization-multiplexed 1 Gsymbol/s, 128 QAM (14 Gbit/s) coherent optical transmission over 160 km using a 1.4 GHz Nyquist filter. , 2008, , .		11
135	The use of a Nyquist filter for reducing an optical signal bandwidth in a coherent QAM optical transmission. IEICE Electronics Express, 2008, 5, 6-10.	0.8	15
136	Polarization and frequency division multiplexed 1Gsymbol/s, 64 QAM coherent optical transmission with 8.6bit/s/Hz spectral efficiency over 160km. IEICE Electronics Express, 2008, 5, 776-781.	0.8	4
137	New Scheme for Independently Stabilizing the Repetition Rate and Optical Frequency of a Laser Using a Regenerative Mode-Locking Technique. , 2008, , .		Ο
138	Optical phase-locked loop for coherent transmission over 500km using heterodyne detection with fiber lasers. IEICE Electronics Express, 2007, 4, 77-81.	0.8	34
139	Mode-locked laser-type optical atomic clock with an optically pumped Cs gas cell. Optics Letters, 2007, 32, 1241.	3.3	11
140	10 GHz regeneratively mode-locked semiconductor optical amplifier fiber ring laser and its linewidth characteristics. Optics Letters, 2007, 32, 3513.	3.3	6
141	Mode-Hop-Free, Optical Frequency Tunable 40-GHz Mode-Locked Fiber Laser. IEEE Journal of Quantum Electronics, 2007, 43, 704-708.	1.9	30
142	1-Gsymbol/s 64-QAM Coherent Optical Transmission Over 150 km. IEEE Photonics Technology Letters, 2007, 19, 638-640.	2.5	35
143	Polymer saturable absorber materials in the 15 μm band using poly-methyl-methacrylate and polystyrene with single-wall carbon nanotubes and their application to a femtosecond laser. Optics Letters, 2006, 31, 915.	3.3	86
144	10Gb/s transmission over 5km at 850nm using single-mode photonic crystal fiber, single-mode VCSEL, and Si-APD. IEICE Electronics Express, 2006, 3, 109-114.	0.8	15

#	Article	IF	CITATIONS
145	Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser. IEICE Electronics Express, 2006, 3, 487-492.	0.8	63
146	An acetylene (13 C2H2) stabilized single-polarization fiber laser. Electronics and Communications in Japan, 2006, 89, 9-17.	0.2	2
147	10 Gb/s×4 channel WDM transmission over a 3 km-long photonic crystal fiber in the 800 nm region. , 2006, , .		0
148	Linewidth and relative intensity noise measurements of longitudinal modes in ultrahigh-speed mode-locked laser diodes. Optics Letters, 2005, 30, 1000.	3.3	11
149	Ultrastable cesium atomic clock with a 91926-GHz regeneratively mode-locked fiber laser. Optics Letters, 2005, 30, 1512.	3.3	3
150	Coherence Degradation in the Process of Supercontinuum Generation in an Optical Fiber. Optical Fiber Fiber Technology, 1998, 4, 215-223.	2.7	113
151	GAWBS noise correlation between cores in multi-core fibers. Optics Express, 0, , .	3.4	2