
Lorraine Pillus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6615395/publications.pdf Version: 2024-02-01

LODDAINE DILLIS

#	Article	IF	CITATIONS
1	Cell cycle roles for GCN5 revealed through genetic suppression. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2021, 1864, 194625.	1.9	6
2	Advances in quantitative biology methods for studying replicative aging in Saccharomyces cerevisiae. Translational Medicine of Aging, 2020, 4, 151-160.	1.3	13
3	A programmable fate decision landscape underlies single-cell aging in yeast. Science, 2020, 369, 325-329.	12.6	77
4	Divergent Aging of Isogenic Yeast Cells Revealed through Single-Cell Phenotypic Dynamics. Cell Systems, 2019, 8, 242-253.e3.	6.2	43
5	Critical genomic regulation mediated by Enhancer of Polycomb. Current Genetics, 2018, 64, 147-154.	1.7	10
6	Connecting <i>GCN5</i> 's centromeric SAGA to the mitotic tension-sensing checkpoint. Molecular Biology of the Cell, 2018, 29, 2201-2212.	2.1	3
7	Chromatin Regulation by the NuA4 Acetyltransferase Complex Is Mediated by Essential Interactions Between Enhancer of Polycomb (Epl1) and Esa1. Genetics, 2017, 205, 1125-1137.	2.9	18
8	The replicative lifespanâ€extending deletion of <i>SGF73</i> results in altered ribosomal gene expression in yeast. Aging Cell, 2017, 16, 785-796.	6.7	14
9	Multigenerational silencing dynamics control cell aging. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11253-11258.	7.1	60
10	Phosphorylation of the 19S regulatory particle ATPase subunit, Rpt6, modifies susceptibility to proteotoxic stress and protein aggregation. PLoS ONE, 2017, 12, e0179893.	2.5	16
11	Functions for diverse metabolic activities in heterochromatin. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1526-35.	7.1	14
12	Promotion of Cell Viability and Histone Gene Expression by the Acetyltransferase Gcn5 and the Protein Phosphatase PP2A in <i>Saccharomyces cerevisiae</i> . Genetics, 2016, 203, 1693-1707.	2.9	14
13	A moonlighting metabolic protein influences repair at DNA double-stranded breaks. Nucleic Acids Research, 2015, 43, 1646-1658.	14.5	15
14	The Set3 Complex Antagonizes the MYST Acetyltransferase Esa1 in the DNA Damage Response. Molecular and Cellular Biology, 2015, 35, 3714-3725.	2.3	10
15	Bypassing the Requirement for an Essential MYST Acetyltransferase. Genetics, 2014, 197, 851-863.	2.9	13
16	The SAGA Histone Deubiquitinase Module Controls Yeast Replicative Lifespan via Sir2 Interaction. Cell Reports, 2014, 8, 477-486.	6.4	62
17	Tyrosine phosphorylation of histone H2A by CK2 regulates transcriptional elongation. Nature, 2014, 516, 267-271.	27.8	100
18	Balancing chromatin remodeling and histone modifications in transcription. Trends in Genetics, 2013, 29, 621-629.	6.7	90

LORRAINE PILLUS

#	Article	IF	CITATIONS
19	STUbLs in chromatin and genome stability. Biopolymers, 2013, 99, 146-154.	2.4	10
20	Functional Antagonism between Sas3 and Gcn5 Acetyltransferases and ISWI Chromatin Remodelers. PLoS Genetics, 2012, 8, e1002994.	3.5	26
21	Suppression Analysis of <i>esa1</i> Mutants in <i>Saccharomyces cerevisiae</i> Links <i>NAB3</i> to Transcriptional Silencing and Nucleolar Functions. G3: Genes, Genomes, Genetics, 2012, 2, 1223-1232.	1.8	9
22	Homocitrate synthase connects amino acid metabolism to chromatin functions through Esa1 and DNA damage. Genes and Development, 2010, 24, 1903-1913.	5.9	24
23	Collaboration Between the Essential Esa1 Acetyltransferase and the Rpd3 Deacetylase Is Mediated by H4K12 Histone Acetylation in <i>Saccharomyces cerevisiae</i> . Genetics, 2009, 183, 149-160.	2.9	40
24	Crystal Structure and Functional Analysis of Homocitrate Synthase, an Essential Enzyme in Lysine Biosynthesis. Journal of Biological Chemistry, 2009, 284, 35769-35780.	3.4	34
25	MYSTs mark chromatin for chromosomal functions. Current Opinion in Cell Biology, 2008, 20, 326-333.	5.4	29
26	Slx5 Promotes Transcriptional Silencing and Is Required for Robust Growth in the Absence of Sir2. Molecular and Cellular Biology, 2008, 28, 1361-1372.	2.3	27
27	New Nomenclature for Chromatin-Modifying Enzymes. Cell, 2007, 131, 633-636.	28.9	849
28	Nuclear export modulates the cytoplasmic Sir2 homologue Hst2. EMBO Reports, 2006, 7, 1247-1251.	4.5	49
29	Chromatin-Modifiying Enzymes Are Essential When the Saccharomyces cerevisiae Morphogenesis Checkpoint Is Constitutively Activated. Genetics, 2006, 174, 1135-1149.	2.9	16
30	Distinct Roles for the Essential MYST Family HAT Esa1p in Transcriptional Silencing. Molecular Biology of the Cell, 2006, 17, 1744-1757.	2.1	48
31	Critical interactions between chromatin modifiers. FASEB Journal, 2006, 20, .	0.5	0
32	Conserved Locus-Specific Silencing Functions of Schizosaccharomyces pombe sir2+. Genetics, 2005, 169, 1243-1260.	2.9	56
33	The Sir4 C-terminal Coiled Coil is Required for Telomeric and Mating Type Silencing in Saccharomyces cerevisiae. Journal of Molecular Biology, 2003, 334, 769-780.	4.2	29
34	Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes and Development, 2003, 17, 2648-2663.	5.9	598
35	Histone deacetylation by Sir2 generates a transcriptionally repressed nucleoprotein complex. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1609-1614.	7.1	41
36	A Unique Class of Conditional sir2 Mutants Displays Distinct Silencing Defects in Saccharomyces cerevisiae. Genetics, 2002, 162, 721-736.	2.9	24

LORRAINE PILLUS

#	Article	IF	CITATIONS
37	Deciphering NAD-Dependent Deacetylases. Cell, 2001, 105, 161-164.	28.9	33
38	Histone H3 specific acetyltransferases are essential for cell cycle progression. Genes and Development, 2001, 15, 3144-3154.	5.9	206
39	Two Classes of <i>sir3</i> Mutants Enhance the <i>sir1</i> Mutant Mating Defect and Abolish Telomeric Silencing in <i>Saccharomyces cerevisiae</i> . Genetics, 2000, 155, 509-522.	2.9	44
40	The Conserved Core of a Human <i>SIR2</i> Homologue Functions in Yeast Silencing. Molecular Biology of the Cell, 1999, 10, 3045-3059.	2.1	97
41	The <i>Schizosaccharomyces pombe hst4</i> ⁺ Gene Is a <i>SIR2</i> Homologue with Silencing and Centromeric Functions. Molecular Biology of the Cell, 1999, 10, 3171-3186.	2.1	68
42	Esa1p Is an Essential Histone Acetyltransferase Required for Cell Cycle Progression. Molecular and Cellular Biology, 1999, 19, 2515-2526.	2.3	327
43	Silent chromatin in yeast: an orchestrated medley featuring Sir3p. BioEssays, 1998, 20, 30-40.	2.5	44
44	Distribution of a Limited Sir2 Protein Pool Regulates the Strength of Yeast rDNA Silencing and Is Modulated by Sir4p. Genetics, 1998, 149, 1205-1219.	2.9	157
45	<i>SET1</i> , A Yeast Member of the <i>Trithorax</i> Family, Functions in Transcriptional Silencing and Diverse Cellular Processes. Molecular Biology of the Cell, 1997, 8, 2421-2436.	2.1	217
46	Yeast SAS silencing genes and human genes associated with AML and HIV–1 Tat interactions are homologous with acetyltransferases. Nature Genetics, 1996, 14, 42-49.	21.4	282
47	Any which way but loose - determining a transcription state in yeast. BioEssays, 1991, 13, 303-304.	2.5	4
48	Epigenetic inheritance of transcriptional states in S. cerevisiae. Cell, 1989, 59, 637-647.	28.9	349