Liguo Qin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6615392/publications.pdf

Version: 2024-02-01

623734 580821 25 30 624 14 citations g-index h-index papers 30 30 30 729 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Bioinspired Surface for Cell Overlay and the Tribological Performances. Lecture Notes in Mechanical Engineering, 2022, , 124-127.	0.4	O
2	Carboxylic Multiâ€Walled Carbon Nanotubes as Reinforcing Fillers in Ionic Polymer–Metal Composite Actuators with Enhanced Driving Performance. Advanced Engineering Materials, 2022, 24, .	3.5	6
3	Releasable agarose-hyaluronan hydrogel with anti-friction performance and enhanced stability for artificial joint applications. Tribology International, 2021, 153, 106622.	5.9	9
4	Enhanced electrical/dielectrical properties of MWCNT@Fe3O4/polyimide flexible composite film aligned by magnetic field. Journal of Materials Science: Materials in Electronics, 2021, 32, 524-542.	2.2	9
5	Novel Therapeutic Platform of Micelles and Nanogels from Dopaâ€Functionalized Triblock Copolymers. Small, 2021, 17, e2007305.	10.0	9
6	Economic Friendly ZnO-Based UV Sensors Using Hydrothermal Growth: A Review. Materials, 2021, 14, 4083.	2.9	26
7	In vitro released characteristics of BSA lubricants from Agarose hydrogel with tunable mechanical behaviors for artificial joint applications. Biotribology, 2021, , 100200.	1.9	2
8	Drag reduction and antifouling properties of non-smooth surfaces modified with ZIF-67. Surface and Coatings Technology, 2021, 427, 127836.	4.8	24
9	Constructing a Dual-Function Surface by Microcasting and Nanospraying for Efficient Drag Reduction and Potential Antifouling Capabilities. Micromachines, 2019, 10, 490.	2.9	32
10	High Temperature Anti-Friction Behaviors of a-Si:H Films and Counterface Material Selection. Coatings, 2019, 9, 450.	2.6	8
11	Polydopamine-Assisted Immobilization of Chitosan Brushes on a Textured CoCrMo Alloy to Improve its Tribology and Biocompatibility. Materials, 2019, 12, 3014.	2.9	7
12	Tribological performance of DLC coating under aqueous solutions. Lubrication Science, 2019, 31, 262-272.	2.1	0
13	Preparation and oil lubrication of polyvinylidene fluoride (PVDF) nanospheres. Materials Research Express, 2019, 6, 085093.	1.6	6
14	A facile method to enhance the tribological performances of MoSe2 nanoparticles as oil additives. Tribology International, 2019, 137, 22-29.	5.9	27
15	Osmosis effect on protein sustained release of Agarose hydrogel for anti-friction performance. Tribology International, 2019, 132, 108-117.	5.9	7
16	Biomimetic surfaces with hierarchical structure using microsized texture and nanosized Cu particles for superhydrophobicity. Advanced Materials Letters, 2019, 10, 569-573.	0.6	1
17	PCEC hydrogel used on sustainedâ€release hyaluronic acid delivery with lubrication effect. Journal of Applied Polymer Science, 2018, 135, 46228.	2.6	11
18	An effective method of edge deburring for laser surface texturing of Co-Cr-Mo alloy. International Journal of Advanced Manufacturing Technology, 2018, 94, 1491-1503.	3.0	23

#	Article	IF	CITATIONS
19	Fabricating hierarchical micro and nano structures on implantable Co–Cr–Mo alloy for tissue engineering by one-step laser ablation. Colloids and Surfaces B: Biointerfaces, 2018, 161, 628-635.	5.0	27
20	Investigating the tribological and biological performance of covalently grafted chitosan coatings on Coâ€"Crâ€"Mo alloy. Tribology International, 2018, 127, 302-312.	5.9	31
21	Biotribological application of poly(Îμ-caprolactone)-poly(ethylene glycol)-poly(Îμ-caprolactone) hydrogel as an efficient carrier with slow-release lubrication effect. Journal of Materials Science, 2017, 52, 12054-12066.	3.7	9
22	An investigation on the lubrication mechanism of MoS2 nano sheet in point contact: The manner of particle entering the contact area. Tribology International, 2017, 107, 48-55.	5. 9	72
23	Modification of spider gear back to uniform the stress and improve the anti-wear performance of a real thrust washer. Engineering Failure Analysis, 2016, 60, 107-116.	4.0	4
24	Understanding the Physical Adsorption Action Mechanism of MoS2 Nanoparticles in Boundary Lubrication with Different Polyisobutyleneamine Succinimide (PIBS) Concentrations. Tribology Letters, 2015, 60, 1.	2.6	16
25	Preparation and bioactive properties of chitosan and casein phosphopeptides composite coatings for orthopedic implants. Carbohydrate Polymers, 2015, 133, 236-244.	10.2	42
26	Response of MC3T3-E1 osteoblast cells to the microenvironment produced on Co–Cr–Mo alloy using laser surface texturing. Journal of Materials Science, 2014, 49, 2662-2671.	3.7	41
27	Influence of surface wettability on the tribological properties of laser textured Co–Cr–Mo alloy in aqueous bovine serum albumin solution. Applied Surface Science, 2013, 268, 79-86.	6.1	96
28	In vivo synthesis of calcium oxalate whiskers on CoCrMo alloy surfaces via biomineralization. Materials Science and Engineering C, 2013, 33, 3839-3844.	7.3	1
29	Modification, characterization and structure–anticoagulant activity relationships of persimmon polysaccharides. Carbohydrate Polymers, 2010, 82, 515-520.	10.2	37
30	Sulfated modification and immunomodulatory activity of water-soluble polysaccharides derived from fresh Chinese persimmon fruit. International Journal of Biological Macromolecules, 2010, 46, 67-71.	7. 5	41