Young Min Shin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6615365/publications.pdf

Version: 2024-02-01

218592 197736 2,549 64 26 49 citations g-index h-index papers 65 65 65 4128 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sprayable nanomicelle hydrogels and inflammatory bowel disease patient cell chips for development of intestinal lesion-specific therapy. Bioactive Materials, 2022, 18, 433-445.	8.6	8
2	Nanotheranostics of Preâ€Stenotic Vessels By Target Touchâ€On Signaling of Peptide Navigator. Advanced Functional Materials, 2022, 32, .	7.8	1
3	Nanotheranostics of Preâ€Stenotic Vessels By Target Touchâ€On Signaling of Peptide Navigator (Adv.) Tj ETQq1 1	1 0.78431 7.8	4rgBT /Ove
4	Dilationâ€Responsive Microshape Programing Prevents Vascular Graft Stenosis. Small, 2021, 17, e2007297.	5.2	7
5	Hormone autocrination by vascularized hydrogel delivery of ovary spheroids to rescue ovarian dysfunctions. Science Advances, 2021, 7, .	4.7	19
6	Selfâ€Enclosable External Support: Dilationâ€Responsive Microshape Programing Prevents Vascular Graft Stenosis (Small 18/2021). Small, 2021, 17, 2170083.	5.2	0
7	Cellâ€Membraneâ€Derived Nanoparticles with Notchâ€1 Suppressor Delivery Promote Hypoxic Cell–Cell Packing and Inhibit Angiogenesis Acting as a Twoâ€Edged Sword. Advanced Materials, 2021, 33, e2101558.	11.1	6
8	Cellâ€Membraneâ€Derived Nanoparticles with Notchâ€1 Suppressor Delivery Promote Hypoxic Cell–Cell Packing and Inhibit Angiogenesis Acting as a Twoâ€Edged Sword (Adv. Mater. 40/2021). Advanced Materials, 2021, 33, 2170312.	11.1	0
9	Quenching Epigenetic Drug Resistance Using Antihypoxic Microparticles in Glioblastoma Patientâ€Derived Chips. Advanced Healthcare Materials, 2021, , 2102226.	3.9	5
10	Biofabrication and application of decellularized bone extracellular matrix for effective bone regeneration. Journal of Industrial and Engineering Chemistry, 2020, 83, 323-332.	2.9	22
11	Stem cell spheroids incorporating fibers coated with adenosine and polydopamine as a modular building blocks for bone tissue engineering. Biomaterials, 2020, 230, 119652.	5 . 7	49
12	Microchannel network hydrogel induced ischemic blood perfusion connection. Nature Communications, 2020, 11, 615.	5.8	43
13	Polydopamine-assisted one-step modification of nanofiber surfaces with adenosine to tune the osteogenic differentiation of mesenchymal stem cells and the maturation of osteoclasts. Biomaterials Science, 2020, 8, 2825-2839.	2.6	8
14	Antiâ€Atherogenic Effect of Stem Cell Nanovesicles Targeting Disturbed Flow Sites. Small, 2020, 16, e2000012.	5.2	14
15	Directional Cell Migration Guide for Improved Tissue Regeneration. Advances in Experimental Medicine and Biology, 2020, 1249, 131-140.	0.8	4
16	Development of a Shapeâ€Memory Tube to Prevent Vascular Stenosis. Advanced Materials, 2019, 31, e1904476.	11.1	38
17	Implantable Vascularized Liver Chip for Crossâ€Validation of Disease Treatment with Animal Model. Advanced Functional Materials, 2019, 29, 1900075.	7.8	28
18	Experimental Tracheal Replacement Using 3-dimensional Bioprinted Artificial Trachea with Autologous Epithelial Cells and Chondrocytes. Scientific Reports, 2019, 9, 2103.	1.6	59

#	Article	IF	CITATIONS
19	Current progress in application of polymeric nanofibers to tissue engineering. Nano Convergence, 2019, 6, 36.	6.3	188
20	Tissue Engineering and Regenerative Medicine 2017: A Year in Review. Tissue Engineering - Part B: Reviews, 2018, 24, 327-344.	2.5	47
21	ROS-Responsive Biomaterial Design for Medical Applications. Advances in Experimental Medicine and Biology, 2018, 1064, 237-251.	0.8	5
22	Microneedle Vascular Couplers with Heparin-Immobilized Surface Improve Suture-Free Anastomosis Performance. ACS Biomaterials Science and Engineering, 2018, 4, 3848-3853.	2.6	4
23	Fabrication of in vitro 3D mineralized tissue by fusion of composite spheroids incorporating biomineral-coated nanofibers and human adipose-derived stem cells. Acta Biomaterialia, 2018, 74, 464-477.	4.1	44
24	Direct Control of Stem Cell Behavior Using Biomaterials and Genetic Factors. Stem Cells International, 2018, 2018, 1-17.	1.2	13
25	Agglomeration of human dermal fibroblasts with ECM mimicking nano-fragments and their effects on proliferation and cell/ECM interactions. Journal of Industrial and Engineering Chemistry, 2018, 67, 80-91.	2.9	12
26	Engineering an aligned endothelial monolayer on a topologically modified nanofibrous platform with a micropatterned structure produced by femtosecond laser ablation. Journal of Materials Chemistry B, 2017, 5, 318-328.	2.9	42
27	Hybrid-spheroids incorporating ECM like engineered fragmented fibers potentiate stem cell function by improved cell/cell and cell/ECM interactions. Acta Biomaterialia, 2017, 64, 161-175.	4.1	66
28	Oxygen-dependent generation of a graded polydopamine coating on nanofibrous materials for controlling stem cell functions. Journal of Materials Chemistry B, 2017, 5, 8865-8878.	2.9	8
29	Advanced capability of radially aligned fibrous scaffolds coated with polydopamine for guiding directional migration of human mesenchymal stem cells. Journal of Materials Chemistry B, 2017, 5, 8725-8737.	2.9	18
30	Graded functionalization of biomaterial surfaces using mussel-inspired adhesive coating of polydopamine. Colloids and Surfaces B: Biointerfaces, 2017, 159, 546-556.	2.5	23
31	Mussel adhesive protein inspired coatings on temperature-responsive hydrogels for cell sheet engineering. Journal of Materials Chemistry B, 2016, 4, 6012-6022.	2.9	29
32	Facile Cell Sheet Harvest and Translocation Mediated by a Thermally Expandable Hydrogel with Controlled Cell Adhesion. Advanced Healthcare Materials, 2016, 5, 2320-2324.	3.9	12
33	Physicochemical characterization of gelatin-immobilized, acrylic acid-bacterial cellulose nanofibers as cell scaffolds using gamma-irradiation. Biotechnology and Bioprocess Engineering, 2015, 20, 942-947.	1.4	3
34	Modulation of human mesenchymal stem cell survival on electrospun mesh with co-immobilized epithelial growth factor and gelatin. RSC Advances, 2015, 5, 55948-55956.	1.7	4
35	Engineered ECM-like microenvironment with fibrous particles for guiding 3D-encapsulated hMSC behaviours. Journal of Materials Chemistry B, 2015, 3, 2732-2741.	2.9	20
36	Characterization of hydroxyapatite-coated bacterial cellulose scaffold for bone tissue engineering. Biotechnology and Bioprocess Engineering, 2015, 20, 948-955.	1.4	48

#	Article	IF	CITATIONS
37	Effect of immobilized collagen type IV on biological properties of endothelial cells for the enhanced endothelialization of synthetic vascular graft materials. Colloids and Surfaces B: Biointerfaces, 2015, 134, 196-203.	2.5	35
38	Materials from Mussel-Inspired Chemistry for Cell and Tissue Engineering Applications. Biomacromolecules, 2015, 16, 2541-2555.	2.6	248
39	Extracellular matrix-inspired BMP-2-delivering biodegradable fibrous particles for bone tissue engineering. Journal of Materials Chemistry B, 2015, 3, 8375-8382.	2.9	20
40	Development of Acrylic Acid Grafted Polycaprolactone (PCL)/Biphasic Calcium Phosphate (BCP) Nanofibers for Bone Tissue Engineering Using Gamma-Irradiation. Porrime, 2015, 39, 418-425.	0.0	1
41	Synergistic Effect of Dualâ€Functionalized Fibrous Scaffold with BCP and RGD Containing Peptide for Improved Osteogenic Differentiation. Macromolecular Bioscience, 2014, 14, 1190-1198.	2.1	27
42	Reconstruction of Vascular Structure with Multicellular Components using Cell Transfer Printing Methods. Advanced Healthcare Materials, 2014, 3, 1465-1474.	3.9	12
43	ê°ë§î,, ì¡°ì,¬ì—•ì•한 ì¡°ì§ê³µí•™ìš© 알ê¸î,° ë,~ë¸ì,,¬ìœì• ë¶,,í•´ì~¥. Tissue Engineering and Regenerative Medicin	e,12 0 14, 1	1,164-71.
44	ê°ë§^î,, ì¡°ì,¬ì—•ì•̃한 í—ÆŒŒë¦°ì•ë•,ìžëœ ë°•íŒë¦¬ì•,, ì€ë£°ë¡œìЋŠ¤ê³°ì¡°ì§ê³µí•™ìš©ì§€ì§€ì²′로ì,,œì•ê°œ	ë° n øë°•특	^l ì" ∉ ë¶"ì"• Tis:
45	Radiation-induced biomimetic modification of dual-layered nano/microfibrous scaffolds for vascular tissue engineering. Biotechnology and Bioprocess Engineering, 2014, 19, 118-125.	1.4	15
46	Promotion of human mesenchymal stem cell differentiation on bioresorbable polycaprolactone/biphasic calcium phosphate composite scaffolds for bone tissue engineering. Biotechnology and Bioprocess Engineering, 2014, 19, 341-349.	1.4	20
47	Bioâ€inspired Immobilization of Cellâ€Adhesive Ligands on Electrospun Nanofibrous Patches for Cell Delivery. Macromolecular Materials and Engineering, 2013, 298, 555-564.	1.7	32
48	Characterization of Microbial Fermented Cellulose Porous Foam Prepared by Radiation Treatment. Hangug Hwangyeong Saengmul Haghoeji, 2013, 31, 302-307.	0.1	1
49	A reliable porcine coronary model of chronic total occlusion using copper wire stents and bioabsorbable levo-polylactic acid polymer. Journal of Cardiology, 2012, 60, 443-447.	0.8	4
50	Mussel-Inspired Immobilization of Vascular Endothelial Growth Factor (VEGF) for Enhanced Endothelialization of Vascular Grafts. Biomacromolecules, 2012, 13, 2020-2028.	2.6	142
51	Polydopamine-mediated immobilization of multiple bioactive molecules for the development of functional vascular graft materials. Biomaterials, 2012, 33, 8343-8352.	5.7	155
52	Properties of herbal extracts against <i>Propionibacterium acnes</i> for biomedical application. Proceedings of SPIE, 2012, , .	0.8	0
53	Transfer Printing of Cell Layers with an Anisotropic Extracellular Matrix Assembly using Cellâ€Interactive and Thermosensitive Hydrogels. Advanced Functional Materials, 2012, 22, 4060-4069.	7.8	33
54	Mussel-inspired surface modification of poly(l-lactide) electrospun fibers for modulation of osteogenic differentiation of human mesenchymal stem cells. Colloids and Surfaces B: Biointerfaces, 2012, 91, 189-197.	2.5	179

#	Article	IF	CITATIONS
55	Enhancement of cardiac myoblast responses onto electrospun PLCL fibrous matrices coated with polydopamine for gelatin immobilization. Macromolecular Research, 2011, 19, 835-842.	1.0	23
56	Release Kinetics and in vitro Bioactivity of Basic Fibroblast Growth Factor: Effect of the Thickness of Fibrous Matrices. Macromolecular Bioscience, 2011, 11, 122-130.	2.1	17
57	Time-dependent mussel-inspired functionalization of poly(l-lactide-co-É)-caprolactone) substrates for tunable cell behaviors. Colloids and Surfaces B: Biointerfaces, 2011, 87, 79-87.	2.5	89
58	Surface modification of electrospun poly(L-lactide-co-É>-caprolactone) fibrous meshes with a RGD peptide for the control of adhesion, proliferation and differentiation of the preosteoblastic cells. Macromolecular Research, 2010, 18, 472-481.	1.0	44
59	The Development of Genipinâ€Crosslinked Poly(caprolactone) (PCL)/Gelatin Nanofibers for Tissue Engineering Applications. Macromolecular Bioscience, 2010, 10, 91-100.	2.1	153
60	In Situ Forming Hydrogels Based on Tyramine Conjugated 4-Arm-PPO-PEO via Enzymatic Oxidative Reaction. Biomacromolecules, 2010, 11, 706-712.	2.6	151
61	Transplantation of mesenchymal stem cells within a poly(lactideâ€ <i>co</i> ≀â€eaprolactone) scaffold improves cardiac function in a rat myocardial infarction model. European Journal of Heart Failure, 2009, 11, 147-153.	2.9	135
62	In vitro andin vivo characterization of a coronary stent coated with an elastic biodegradable polymer for the sustained release of paclitaxel. Macromolecular Research, 2009, 17, 1039-1042.	1.0	5
63	Preparation and characterization of temperature-sensitive poly(N-isopropylacrylamide)-g-poly(L-lactide-co-Îμ-caprolactone) nanofibers. Macromolecular Research, 2008, 16, 139-148.	1.0	13
64	Modulation of Spreading, Proliferation, and Differentiation of Human Mesenchymal Stem Cells on Gelatin-Immobilized Poly($\langle scp \rangle \langle scp \rangle - actide i > co i > lubstrates Substrates Biomacromolecules, 2008, 9, 1772-1781.$	2.6	89