Young Min Shin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6615365/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Materials from Mussel-Inspired Chemistry for Cell and Tissue Engineering Applications. Biomacromolecules, 2015, 16, 2541-2555.	2.6	248
2	Current progress in application of polymeric nanofibers to tissue engineering. Nano Convergence, 2019, 6, 36.	6.3	188
3	Mussel-inspired surface modification of poly(l-lactide) electrospun fibers for modulation of osteogenic differentiation of human mesenchymal stem cells. Colloids and Surfaces B: Biointerfaces, 2012, 91, 189-197.	2.5	179
4	Polydopamine-mediated immobilization of multiple bioactive molecules for the development of functional vascular graft materials. Biomaterials, 2012, 33, 8343-8352.	5.7	155
5	The Development of Genipinâ€Crosslinked Poly(caprolactone) (PCL)/Gelatin Nanofibers for Tissue Engineering Applications. Macromolecular Bioscience, 2010, 10, 91-100.	2.1	153
6	In Situ Forming Hydrogels Based on Tyramine Conjugated 4-Arm-PPO-PEO via Enzymatic Oxidative Reaction. Biomacromolecules, 2010, 11, 706-712.	2.6	151
7	Mussel-Inspired Immobilization of Vascular Endothelial Growth Factor (VEGF) for Enhanced Endothelialization of Vascular Grafts. Biomacromolecules, 2012, 13, 2020-2028.	2.6	142
8	Transplantation of mesenchymal stem cells within a poly(lactideâ€ <i>co</i> â€É›â€caprolactone) scaffold improves cardiac function in a rat myocardial infarction model. European Journal of Heart Failure, 2009, 11, 147-153.	2.9	135
9	Modulation of Spreading, Proliferation, and Differentiation of Human Mesenchymal Stem Cells on Gelatin-Immobilized Poly(<scp>l</scp> -lactide- <i>co</i> -ïµ-caprolactone) Substrates. Biomacromolecules, 2008, 9, 1772-1781.	2.6	89
10	Time-dependent mussel-inspired functionalization of poly(l-lactide-co-É›-caprolactone) substrates for tunable cell behaviors. Colloids and Surfaces B: Biointerfaces, 2011, 87, 79-87.	2.5	89
11	Hybrid-spheroids incorporating ECM like engineered fragmented fibers potentiate stem cell function by improved cell/cell and cell/ECM interactions. Acta Biomaterialia, 2017, 64, 161-175.	4.1	66
12	Experimental Tracheal Replacement Using 3-dimensional Bioprinted Artificial Trachea with Autologous Epithelial Cells and Chondrocytes. Scientific Reports, 2019, 9, 2103.	1.6	59
13	Stem cell spheroids incorporating fibers coated with adenosine and polydopamine as a modular building blocks for bone tissue engineering. Biomaterials, 2020, 230, 119652.	5.7	49
14	Characterization of hydroxyapatite-coated bacterial cellulose scaffold for bone tissue engineering. Biotechnology and Bioprocess Engineering, 2015, 20, 948-955.	1.4	48
15	Tissue Engineering and Regenerative Medicine 2017: A Year in Review. Tissue Engineering - Part B: Reviews, 2018, 24, 327-344.	2.5	47
16	Surface modification of electrospun poly(L-lactide-co-É›-caprolactone) fibrous meshes with a RGD peptide for the control of adhesion, proliferation and differentiation of the preosteoblastic cells. Macromolecular Research, 2010, 18, 472-481.	1.0	44
17	Fabrication of in vitro 3D mineralized tissue by fusion of composite spheroids incorporating biomineral-coated nanofibers and human adipose-derived stem cells. Acta Biomaterialia, 2018, 74, 464-477.	4.1	44
18	Microchannel network hydrogel induced ischemic blood perfusion connection. Nature Communications, 2020, 11, 615.	5.8	43

YOUNG MIN SHIN

#	Article	IF	CITATIONS
19	Engineering an aligned endothelial monolayer on a topologically modified nanofibrous platform with a micropatterned structure produced by femtosecond laser ablation. Journal of Materials Chemistry B, 2017, 5, 318-328.	2.9	42
20	Development of a Shapeâ€Memory Tube to Prevent Vascular Stenosis. Advanced Materials, 2019, 31, e1904476.	11.1	38
21	Effect of immobilized collagen type IV on biological properties of endothelial cells for the enhanced endothelialization of synthetic vascular graft materials. Colloids and Surfaces B: Biointerfaces, 2015, 134, 196-203.	2.5	35
22	Transfer Printing of Cell Layers with an Anisotropic Extracellular Matrix Assembly using Cellâ€Interactive and Thermosensitive Hydrogels. Advanced Functional Materials, 2012, 22, 4060-4069.	7.8	33
23	Bioâ€inspired Immobilization of Cellâ€Adhesive Ligands on Electrospun Nanofibrous Patches for Cell Delivery. Macromolecular Materials and Engineering, 2013, 298, 555-564.	1.7	32
24	Mussel adhesive protein inspired coatings on temperature-responsive hydrogels for cell sheet engineering. Journal of Materials Chemistry B, 2016, 4, 6012-6022.	2.9	29
25	Implantable Vascularized Liver Chip for Crossâ€Validation of Disease Treatment with Animal Model. Advanced Functional Materials, 2019, 29, 1900075.	7.8	28
26	Synergistic Effect of Dualâ€Functionalized Fibrous Scaffold with BCP and RGD Containing Peptide for Improved Osteogenic Differentiation. Macromolecular Bioscience, 2014, 14, 1190-1198.	2.1	27
27	Enhancement of cardiac myoblast responses onto electrospun PLCL fibrous matrices coated with polydopamine for gelatin immobilization. Macromolecular Research, 2011, 19, 835-842.	1.0	23
28	Graded functionalization of biomaterial surfaces using mussel-inspired adhesive coating of polydopamine. Colloids and Surfaces B: Biointerfaces, 2017, 159, 546-556.	2.5	23
29	Biofabrication and application of decellularized bone extracellular matrix for effective bone regeneration. Journal of Industrial and Engineering Chemistry, 2020, 83, 323-332.	2.9	22
30	Promotion of human mesenchymal stem cell differentiation on bioresorbable polycaprolactone/biphasic calcium phosphate composite scaffolds for bone tissue engineering. Biotechnology and Bioprocess Engineering, 2014, 19, 341-349.	1.4	20
31	Engineered ECM-like microenvironment with fibrous particles for guiding 3D-encapsulated hMSC behaviours. Journal of Materials Chemistry B, 2015, 3, 2732-2741.	2.9	20
32	Extracellular matrix-inspired BMP-2-delivering biodegradable fibrous particles for bone tissue engineering. Journal of Materials Chemistry B, 2015, 3, 8375-8382.	2.9	20
33	Hormone autocrination by vascularized hydrogel delivery of ovary spheroids to rescue ovarian dysfunctions. Science Advances, 2021, 7, .	4.7	19
34	Advanced capability of radially aligned fibrous scaffolds coated with polydopamine for guiding directional migration of human mesenchymal stem cells. Journal of Materials Chemistry B, 2017, 5, 8725-8737.	2.9	18
35	Release Kinetics and in vitro Bioactivity of Basic Fibroblast Growth Factor: Effect of the Thickness of Fibrous Matrices. Macromolecular Bioscience, 2011, 11, 122-130.	2.1	17
36	Radiation-induced biomimetic modification of dual-layered nano/microfibrous scaffolds for vascular tissue engineering. Biotechnology and Bioprocess Engineering, 2014, 19, 118-125.	1.4	15

YOUNG MIN SHIN

37AntiàGAtherogenic Effect of Stem Cell Nanovesicles Targeting Disturbed Flow Sites. Small, 2020, 16, e2000012.5.238Preparation and characterization of temperature-sensitive poly(N-isopropylacrylamide)-g-poly(L-lactide-co-lµ-caprolactone) nanofibers. Macromolecular Research, 2008, 16, 139-148.1.039Direct Control of Stem Cell Behavior Using Biomaterials and Genetic Factors. Stem Cells International, 2018, 2018, 1-17.1.240Reconstruction of Vascular Structure with Multicellular Components using Cell Transfer Printing Methods. Advanced Healthcare Materials, 2014, 3, 1465-1474.3.941Facile Cell Sheet Harvest and Translocation Mediated by a Thermally Expandable Hydrogel with Controlled Cell Adhesion. Advanced Healthcare Materials, 2016, 5, 2320-2324.3.942Agglomeration of human dermal fibroblasts with ECM mimicking nano-fragments and their effects on proliferation and cell/ECM interactions. Journal of Industrial and Engineering Chemistry, 2018, 67, 80-91.2.943Oxygen-dependent generation of a graded polydopamine coating on nanofibrous materials for controlling stem cell functions. Journal of Materials Chemistry B, 2017, 5, 8865-8878.2.9	ITATIONS
38Preparation and characterization of temperature-sensitive poly(N-isopropylacrylamide)-g-poly(L-lactide-co-ε-caprolactone) nanofibers. Macromolecular Research, 2008, 16, 139-148.1.039Direct Control of Stem Cell Behavior Using Biomaterials and Genetic Factors. Stem Cells International, 2018, 2018, 1-17.1.240Reconstruction of Vascular Structure with Multicellular Components using Cell Transfer Printing Methods. Advanced Healthcare Materials, 2014, 3, 1465-1474.3.941Facile Cell Sheet Harvest and Translocation Mediated by a Thermally Expandable Hydrogel with Controlled Cell Adhesion. Advanced Healthcare Materials, 2016, 5, 2320-2324.3.942Agglomeration of human dermal fibroblasts with ECM mimicking nano-fragments and their effects on proliferation and cell/ECM interactions. Journal of Industrial and Engineering Chemistry, 2018, 67, 80-91.2.943Oxygen-dependent generation of a graded polydopamine coating on nanofibrous materials for controlling stem cell functions. Journal of Materials Chemistry B, 2017, 5, 8865-8878.2.9	4
39Direct Control of Stem Cell Behavior Using Biomaterials and Genetic Factors. Stem Cells International, 2018, 2018, 1-17.1.240Reconstruction of Vascular Structure with Multicellular Components using Cell Transfer Printing Methods. Advanced Healthcare Materials, 2014, 3, 1465-1474.3.941Facile Cell Sheet Harvest and Translocation Mediated by a Thermally Expandable Hydrogel with Controlled Cell Adhesion. Advanced Healthcare Materials, 2016, 5, 2320-2324.3.942Agglomeration of human dermal fibroblasts with ECM mimicking nano-fragments and their effects on proliferation and cell/ECM interactions. Journal of Industrial and Engineering Chemistry, 2018, 67, 80-91.2.943Oxygen-dependent generation of a graded polydopamine coating on nanofibrous materials for controlling stem cell functions. Journal of Materials Chemistry B, 2017, 5, 8865-8878.2.9	3
40Reconstruction of Vascular Structure with Multicellular Components using Cell Transfer Printing Methods. Advanced Healthcare Materials, 2014, 3, 1465-1474.3.941Facile Cell Sheet Harvest and Translocation Mediated by a Thermally Expandable Hydrogel with Controlled Cell Adhesion. Advanced Healthcare Materials, 2016, 5, 2320-2324.3.942Agglomeration of human dermal fibroblasts with ECM mimicking nano-fragments and their effects on proliferation and cell/ECM interactions. Journal of Industrial and Engineering Chemistry, 2018, 67, 80-91.2.943Oxygen-dependent generation of a graded polydopamine coating on nanofibrous materials for controlling stem cell functions. Journal of Materials Chemistry B, 2017, 5, 8865-8878.2.9	3
41Facile Cell Sheet Harvest and Translocation Mediated by a Thermally Expandable Hydrogel with Controlled Cell Adhesion. Advanced Healthcare Materials, 2016, 5, 2320-2324.3.942Agglomeration of human dermal fibroblasts with ECM mimicking nano-fragments and their effects on proliferation and cell/ECM interactions. Journal of Industrial and Engineering Chemistry, 2018, 67, 80-91.2.943Oxygen-dependent generation of a graded polydopamine coating on nanofibrous materials for controlling stem cell functions. Journal of Materials Chemistry B, 2017, 5, 8865-8878.2.9	2
42Agglomeration of human dermal fibroblasts with ECM mimicking nano-fragments and their effects on proliferation and cell/ECM interactions. Journal of Industrial and Engineering Chemistry, 2018, 67, 80-91.2.943Oxygen-dependent generation of a graded polydopamine coating on nanofibrous materials for controlling stem cell functions. Journal of Materials Chemistry B, 2017, 5, 8865-8878.2.9	2
Oxygen-dependent generation of a graded polydopamine coating on nanofibrous materials for controlling stem cell functions. Journal of Materials Chemistry B, 2017, 5, 8865-8878.	2
Polydopamine-assisted one-step modification of nanofiber surfaces with adenosine to tune the osteogenic differentiation of mesenchymal stem cells and the maturation of osteoclasts. 2.6 Biomaterials Science, 2020, 8, 2825-2839.	;
45 Sprayable nanomicelle hydrogels and inflammatory bowel disease patient cell chips for development 8.6 8.6 8	
Dilationâ€Responsive Microshape Programing Prevents Vascular Graft Stenosis. Small, 2021, 17, e2007297. 5.2 5.2	
 47 Cellâ€Membraneâ€Derived Nanoparticles with Notchâ€l Suppressor Delivery Promote Hypoxic Cell–Cell 47 Packing and Inhibit Angiogenesis Acting as a Twoâ€Edged Sword. Advanced Materials, 2021, 33, e2101558. 	
 In vitro andin vivo characterization of a coronary stent coated with an elastic biodegradable polymer for the sustained release of paclitaxel. Macromolecular Research, 2009, 17, 1039-1042. 	
49 ROS-Responsive Biomaterial Design for Medical Applications. Advances in Experimental Medicine and 0.8 9 Biology, 2018, 1064, 237-251.	
50 Quenching Epigenetic Drug Resistance Using Antihypoxic Microparticles in Glioblastoma 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9	
51A reliable porcine coronary model of chronic total occlusion using copper wire stents and bioabsorbable levo-polylactic acid polymer. Journal of Cardiology, 2012, 60, 443-447.0.8	
52 ê°ë§´î,, 즰ì,¬ì—•ì•̃한 í—≇ŒŒë¦°ì•ë,sìžëœ ë°•íŒë¦¬ì•,, ì€ë£°ë;œìĩ\$Ф ê³ʿî;° ì§ê³µí•™ìš© 지지체ë;œì,,œì• ê°œëºໝe박특ì,,	eë¶"ì"• Tis:

53	Modulation of human mesenchymal stem cell survival on electrospun mesh with co-immobilized epithelial growth factor and gelatin. RSC Advances, 2015, 5, 55948-55956.	1.7	4
54	Microneedle Vascular Couplers with Heparin-Immobilized Surface Improve Suture-Free Anastomosis Performance. ACS Biomaterials Science and Engineering, 2018, 4, 3848-3853.	2.6	4

YOUNG MIN SHIN

#	Article	IF	CITATIONS
55	Directional Cell Migration Guide for Improved Tissue Regeneration. Advances in Experimental Medicine and Biology, 2020, 1249, 131-140.	0.8	4
56	Physicochemical characterization of gelatin-immobilized, acrylic acid-bacterial cellulose nanofibers as cell scaffolds using gamma-irradiation. Biotechnology and Bioprocess Engineering, 2015, 20, 942-947.	1.4	3
57	ê°ë§´î" ì¡°ì,¬ì—•ì•한 ì;°ì§ê³µí•™ìš© 알ê,î,° ë,~ë,섬ìœì• ë¶"í•´ ì¯í–¥. Tissue Engineering and Regenerative Medicir	ne,12014, I	11,164-71.
58	Characterization of Microbial Fermented Cellulose Porous Foam Prepared by Radiation Treatment. Hangug Hwangyeong Saengmul Haghoeji, 2013, 31, 302-307.	0.1	1
59	Development of Acrylic Acid Grafted Polycaprolactone (PCL)/Biphasic Calcium Phosphate (BCP) Nanofibers for Bone Tissue Engineering Using Gamma-Irradiation. Porrime, 2015, 39, 418-425.	0.0	1
60	Nanotheranostics of Preâ€Stenotic Vessels By Target Touchâ€On Signaling of Peptide Navigator. Advanced Functional Materials, 2022, 32, .	7.8	1
61	Properties of herbal extracts against <i>Propionibacterium acnes</i> for biomedical application. Proceedings of SPIE, 2012, , .	0.8	0
62	Selfâ€Enclosable External Support: Dilationâ€Responsive Microshape Programing Prevents Vascular Graft Stenosis (Small 18/2021). Small, 2021, 17, 2170083.	5.2	0
63	Cellâ€Membraneâ€Derived Nanoparticles with Notchâ€1 Suppressor Delivery Promote Hypoxic Cell–Cell Packing and Inhibit Angiogenesis Acting as a Twoâ€Edged Sword (Adv. Mater. 40/2021). Advanced Materials, 2021, 33, 2170312.	11.1	0

Nanotheranostics of Preâ€Stenotic Vessels By Target Touchâ€On Signaling of Peptide Navigator (Adv.) Tj ETQq0 0 0 rgBT /Overlock 10