Marlio Jc Bonfim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/661522/publications.pdf

Version: 2024-02-01

53 1,967 19
papers citations h-index

54 54 54 2162 all docs docs citations times ranked citing authors

43

g-index

#	Article	IF	Citations
1	A high throughput study of both compositionally graded and homogeneous Fe–Pt thin films. Journal of Materials Research and Technology, 2022, 18, 1245-1255.	2.6	3
2	Electromagnetic Launching System as an Alternative to Non-Destructive Sonic Wave Generation for Steel Bar Length Determination. IEEE Latin America Transactions, 2021, 19, 306-313.	1.2	2
3	Distributed temperature sensing in OPGW with multiple optical fibres. IET Science, Measurement and Technology, 2019, 13, 1219-1223.	0.9	8
4	Water pollution assessment by microcontroller-based lock-in amplifier. , 2019, , .		2
5	Lock-in amplifier impedance meter using a low-cost microcontroller. , 2019, , .		4
6	Remote Actuation of Apoptosis in Liver Cancer Cells via Magneto-Mechanical Modulation of Iron Oxide Nanoparticles. Cancers, 2019, 11, 1873.	1.7	40
7	A Hammerstein–Wiener Model for Single-Electron Transistors. IEEE Transactions on Electron Devices, 2019, 66, 1092-1099.	1.6	7
8	Development of a Measurement Apparatus for Conducted Electromagnetic Emissions. IEEE Latin America Transactions, 2018, 16, 2122-2130.	1.2	0
9	A Spiking Neural Network implemented with Single-Electron Transistors and NoCs. Nano Communication Networks, 2018, 17, 21-29.	1.6	4
10	Preparation and characterisation of compositionally graded SmCo films. AIP Advances, 2017, 7, 056227.	0.6	3
11	Using injection molding and reversible bonding for easy fabrication of magnetic cell trapping and sorting devices. Journal of Magnetism and Magnetic Materials, 2017, 427, 306-313.	1.0	26
12	A modified nanoelectronic spiking neuron model. Journal of Computational Electronics, 2017, 16, 98-105.	1.3	3
13	The use of pulsed magnetic fields to increase the uptake of iron oxide nanoparticles by living cells. Applied Physics Letters, 2017, 111, .	1.5	19
14	A combinatorial approach to the study of Sm-Fe-Ti based $1\hat{a}^{1}$ hard magnetic films. , 2017 , , .		0
15	Os fundamentos quânticos da Ressonância Magnética Nuclear. Revista Brasileira De Ensino De Fisica, 2017, 40, .	0.2	1
16	Very large domain wall velocities in Pt/Co/GdOx and Pt/Co/Gd trilayers with Dzyaloshinskii-Moriya interaction. Europhysics Letters, 2016, 113, 67001.	0.7	75
17	Domain wall dynamics in ultrathin Pt/Co/AlOx microstrips under large combined magnetic fields. Physical Review B, 2016, 93, .	1.1	44
18	Velocity asymmetry of Dzyaloshinskii domain walls in the creep and flow regimes. Journal of Physics Condensed Matter, 2015, 27, 326002.	0.7	56

#	Article	IF	Citations
19	Análise do caminho de retorno de uma corrente elétrica em um plano terra. Revista Brasileira De Ensino De Fisica, 2015, 37, 4308-1-4308-11.	0.2	0
20	Magnetic properties of patterned arrays of exchange-biased IrMn/Co square dots. Journal Physics D: Applied Physics, 2013, 46, 345308.	1.3	3
21	Geometry optimization for application of radio frequency signals on diamond samples. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 2013, 12, 666-677.	0.4	0
22	Direct Observation of Massless Domain Wall Dynamics in Nanostripes with Perpendicular Magnetic Anisotropy. Physical Review Letters, 2012, 108, 247202.	2.9	56
23	Fast current-induced domain-wall motion controlled by the Rashba effect. Nature Materials, 2011, 10, 419-423.	13.3	741
24	20 T portable bipolar magnetic pulser. Review of Scientific Instruments, 2010, 81, 064705.	0.6	2
25	Finite-Element Time-Domain Simulation of Electric Discharges. IEEE Transactions on Microwave Theory and Techniques, 2008, 56, 1435-1439.	2.9	6
26	High domain wall velocities induced by current in ultrathin Pt/Co/AlOx wires with perpendicular magnetic anisotropy. Applied Physics Letters, 2008, 93, .	1.5	204
27	Magnetization reversal of nanostructured tunnel junctions from prepatterned substrates. Journal of Applied Physics, 2008, 103, 07C108.	1.1	0
28	Influence of topography and Co domain walls on the magnetization reversal of the FeNi layer inFeNiâ^•Al2O3â^•Comagnetic tunnel junctions. Physical Review B, 2006, 74, .	1.1	8
29	Nanosecond magnetization reversal of highly coercive FePt with pulsed microcoils: experiments and modelling. , 2006, , .		0
30	Magnetization Reversal of Highly Coercive FePt Examined With Pulsed Microcoils. IEEE Transactions on Magnetics, 2006, 42, 3072-3074.	1.2	14
31	Dynamics of Magnetic Domain Wall Motion after Nucleation: Dependence on the Wall Energy. Physical Review Letters, 2006, 96, 097204.	2.9	29
32	Mobility of domain wall motion in the permalloy layer of a spin-valve-like trilayer. Journal of Magnetism and Magnetic Materials, 2005, 293, 863-871.	1.0	16
33	Magnetic metal-base transistor with organic emitter. Journal of Applied Physics, 2005, 97, 026102.	1.1	17
34	Interplay between magnetic anisotropy and interlayer coupling in nanosecond magnetization reversal of spin-valve trilayers. Physical Review B, 2005, 71, .	1.1	8
35	Magnetic relaxation of exchange biasedPtâ^•Comultilayers studied by time-resolved Kerr microscopy. Physical Review B, 2005, 72, .	1.1	33
36	Influence of domain wall interactions on nanosecond switching in magnetic tunnel junctions. Physical Review B, 2005, 72, .	1.1	22

#	Article	IF	CITATIONS
37	Exploring spin valve magnetization reversal dynamics with temporal, spatial and layer resolution: Influence of domain-wall energy. Applied Physics Letters, 2004, 85, 440-442.	1.5	19
38	Time and layer resolved magnetic domain imagig of FeNi/Cu/Co trilayers using x-ray photoelectron emission microscopy (invited). Journal of Applied Physics, 2004, 95, 6533-6536.	1.1	18
39	Switching-mode-dependent magnetic interlayer coupling strength in spin valves and magnetic tunnel junctions. Physical Review B, 2004, 69, .	1.1	33
40	Perpendicular Interlayer Coupling inNi80Fe20/NiO/CoTrilayers. Physical Review Letters, 2003, 91, 027201.	2.9	70
41	Time-resolved magnetic domain imaging by x-ray photoemission electron microscopy. Applied Physics Letters, 2003, 82, 2299-2301.	1.5	101
42	Element-Selective Nanosecond Magnetization Dynamics in Magnetic Heterostructures. Physical Review Letters, 2001, 86, 3646-3649.	2.9	76
43	Dynamical properties of magnetization reversal in exchange-coupled NiO/Co bilayers. Physical Review B, 2001, 64, .	1.1	20
44	Magnetization reversal dynamics in exchange-coupled NiO–Co bilayers. Journal of Applied Physics, 2001, 89, 6585-6587.	1.1	9
45	50 T pulsed magnetic fields in microcoils. Journal of Applied Physics, 2000, 87, 1996-2002.	1.1	41
46	Nanosecond resolved techniques for dynamical magnetization reversal measurements. Journal of Applied Physics, 2000, 87, 5974-5976.	1.1	12
47	Dispersive XAS at third-generation sources: strengths and limitations. Journal of Synchrotron Radiation, 1999, 6, 146-148.	1.0	22
48	Analysis of Magnetization Processes in Nanocomposite Hard Magnetic Materials from Macroscopic Magnetic Measurements and X-RAY Magnetic Circular Dichroism. Materials Research Society Symposia Proceedings, 1999, 577, 175.	0.1	3
49	Nanosecond-resolved XMCD on ID24 at the ESRF to investigate the element-selective dynamics of magnetization switching of Gd–Co amorphous thin film. Journal of Synchrotron Radiation, 1998, 5, 750-752.	1.0	12
50	Quarter-Wave Plates and X-ray Magnetic Circular Dichroism on ID24 at the ESRF. Journal of Synchrotron Radiation, 1998, 5, 1298-1303.	1.0	19
51	Dependence of coercivity on maximum applied field in dynamic magnetization reversal of Co/NiO bilayers. , 0, , .		0
52	Dependence of Neel "orange-peel" coupling on magnetization reversal process. , 0, , .		0
53	High Domain Wall Velocity at Zero Magnetic Field Induced by Low Current Densities in Spin Valve Nanostripes. Applied Physics Express, 0, 2, 023003.	1.1	32