
Sofia Chulze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6615199/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	One Fungus, One Name: Defining the Genus <i>Fusarium</i> in a Scientifically Robust Way That Preserves Longstanding Use. Phytopathology, 2013, 103, 400-408.	2.2	219
2	Strategies to reduce mycotoxin levels in maize during storage: a review. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2010, 27, 651-657.	2.3	217
3	Bacillus velezensis RC 218 as a biocontrol agent to reduce Fusarium head blight and deoxynivalenol accumulation: Genome sequencing and secondary metabolite cluster profiles. Microbiological Research, 2016, 192, 30-36.	5.3	149
4	Fusarium and Fumonisin Occurrence in Argentinian Corn at Different Ear Maturity Stages. Journal of Agricultural and Food Chemistry, 1996, 44, 2797-2801.	5.2	131
5	Temperature and water activity effects on growth and temporal deoxynivalenol production by two Argentinean strains of Fusarium graminearum on irradiated wheat grain. International Journal of Food Microbiology, 2006, 106, 291-296.	4.7	114
6	Potential biocontrol agents for Fusarium head blight and deoxynivalenol production in wheat. Crop Protection, 2007, 26, 1702-1710.	2.1	114
7	Phylogenomic Analysis of a 55.1-kb 19-Gene Dataset Resolves a Monophyletic <i>Fusarium</i> that Includes the <i>Fusarium solani</i> Species Complex. Phytopathology, 2021, 111, 1064-1079.	2.2	107
8	Occurrence of ochratoxin A in wine and ochratoxigenic mycoflora in grapes and dried vine fruits in South America. International Journal of Food Microbiology, 2006, 111, S5-S9.	4.7	95
9	Impact of environmental factors and fungicides on growth and deoxinivalenol production by Fusarium graminearum isolates from Argentinian wheat. Crop Protection, 2004, 23, 117-125.	2.1	93
10	Genetic Variation in Fusarium Section Liseola from No-Till Maize in Argentina. Applied and Environmental Microbiology, 2000, 66, 5312-5315.	3.1	78
11	Ochratoxin A and ochratoxigenic Aspergillus species in Argentinean wine grapes cultivated under organic and non-organic systems. International Journal of Food Microbiology, 2007, 114, 131-135.	4.7	69
12	Biological control of Fusarium graminearum sensu stricto, causal agent of Fusarium head blight of wheat, using formulated antagonists under field conditions in Argentina. Biological Control, 2016, 94, 56-61.	3.0	62
13	Biocontrol as a strategy to reduce the impact of ochratoxin A and Aspergillus section Nigri in grapes. International Journal of Food Microbiology, 2011, 151, 70-77.	4.7	61
14	Population genetic structure ofGibberella zeaeisolated from wheat in Argentina. Food Additives and Contaminants, 2007, 24, 1115-1120.	2.0	58
15	Genetic population structure and trichothecene genotypes of <i>Fusarium graminearum</i> isolated from wheat in southern Brazil. Plant Pathology, 2012, 61, 289-295.	2.4	57
16	The Mycotox Charter: Increasing Awareness of, and Concerted Action for, Minimizing Mycotoxin Exposure Worldwide. Toxins, 2018, 10, 149.	3.4	57
17	Vegetative Compatibility and Mycotoxin Chemotypes among Fusarium graminearum (Gibberella zeae) Isolates from Wheat in Argentina. European Journal of Plant Pathology, 2006, 115, 139-148.	1.7	54
18	Biocontrol and population dynamics of <i>Fusarium</i> spp. on wheat stubble in Argentina. Plant Pathology, 2013, 62, 859-866.	2.4	51

#	Article	IF	CITATIONS
19	Biological control as a strategy to reduce the impact of mycotoxins in peanuts, grapes and cereals in Argentina. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2015, 32, 471-479.	2.3	51
20	Potential use of antioxidants for control of growth and fumonisin production by Fusarium verticillioides and Fusarium proliferatum on whole maize grain. International Journal of Food Microbiology, 2003, 83, 319-324.	4.7	50
21	Biocontrol of Fusarium graminearum sensu stricto, Reduction of Deoxynivalenol Accumulation and Phytohormone Induction by Two Selected Antagonists. Toxins, 2018, 10, 88.	3.4	49
22	Aspergillus flavus population isolated from soil of Argentina's peanut-growing region. Sclerotia production and toxigenic profile. Journal of the Science of Food and Agriculture, 2005, 85, 2349-2353.	3.5	47
23	Aspergillus section Nigri species isolated from different wine-grape growing regions in Argentina. International Journal of Food Microbiology, 2009, 136, 137-141.	4.7	45
24	Presence of Multiple Mycotoxins and Other Fungal Metabolites in Native Grasses from a Wetland Ecosystem in Argentina Intended for Grazing Cattle. Toxins, 2015, 7, 3309-3329.	3.4	45
25	Natural occurrence of fumonisins and their correlation to Fusarium contamination in commercial corn hybrids growth in Argentina. Mycopathologia, 1996, 135, 29-34.	3.1	44
26	Key Global Actions for Mycotoxin Management in Wheat and Other Small Grains. Toxins, 2021, 13, 725.	3.4	43
27	Aspergillus species from sectionFlavi isolated from soil at planting and harvest time in peanut-growing regions of Argentina. Journal of the Science of Food and Agriculture, 2003, 83, 1303-1307.	3.5	39
28	Biodiversity of Aspergillus section Nigri populations in Argentinian vineyards and ochratoxin A contamination. Food Microbiology, 2013, 36, 182-190.	4.2	39
29	In vitro and in vivo studies to assess the effectiveness of cholestyramine as a binding agent for fumonisins. Mycopathologia, 2001, 151, 147-153.	3.1	38
30	Efficacy of antioxidant mixtures on growth, fumonisin production and hydrolytic enzyme production by Fusarium verticillioides and F. proliferatum in vitro on maize-based media. Mycological Research, 2002, 106, 1093-1099.	2.5	38
31	Fusaproliferin, beauvericin and fumonisin production by different mating populations among the Gibberella fujikuroi complex isolated from maize. Mycological Research, 2004, 108, 154-160.	2.5	38
32	Impact of Osmotic and Matric Water Stress on Germination, Growth, Mycelial Water Potentials and Endogenous Accumulation of Sugars and Sugar Alcohols in Fusarium graminearum. Mycologia, 2004, 96, 470.	1.9	38
33	Phylogenetic characterization and ochratoxin A – Fumonisin profile of black Aspergillus isolated from grapes in Argentina. International Journal of Food Microbiology, 2011, 149, 171-176.	4.7	36
34	Impact of cycling temperatures on <i>Fusarium verticillioides</i> and <i>Fusarium graminearum</i> growth and mycotoxins production in soybean. Journal of the Science of Food and Agriculture, 2012, 92, 2952-2959.	3.5	35
35	Fusarium temperatum and Fusarium subglutinans isolated from maize in Argentina. International Journal of Food Microbiology, 2015, 199, 86-92.	4.7	35
36	Effects of apple and pear varieties and pH on patulin accumulation by <i>Penicillium expansum</i> . Journal of the Science of Food and Agriculture, 2008, 88, 2738-2743.	3.5	33

#	Article	IF	CITATIONS
37	Pathogenicity of phylogenetic species in the Fusarium graminearum complex on soybean seedlings in Argentina. European Journal of Plant Pathology, 2014, 138, 215-222.	1.7	33
38	Control of Ochratoxin A Production in Grapes. Toxins, 2012, 4, 364-372.	3.4	31
39	Fumonisin production by, and mating populations of, Fusarium section Liseola isolates from maize in Argentina. Mycological Research, 1998, 102, 141-144.	2.5	30
40	Molecular characterization ofAspergillussectionFlaviisolates collected from peanut fields in Argentina using AFLPs. Journal of Applied Microbiology, 2007, 103, 900-909.	3.1	29
41	Preliminary Study on the Use of Chitosan as an Eco-Friendly Alternative to Control Fusarium Growth and Mycotoxin Production on Maize and Wheat. Pathogens, 2019, 8, 29.	2.8	26
42	An integrated dual strategy to control Fusarium graminearum sensu stricto by the biocontrol agent Streptomyces sp. RC 87B under field conditions. Plant Gene, 2017, 9, 13-18.	2.3	25
43	Genetic structure of Fusarium verticillioides populations isolated from maize in Argentina. European Journal of Plant Pathology, 2009, 123, 207-215.	1.7	23
44	Influence of Planococcus ficus on Aspergillus section Nigri and ochratoxin A incidence in vineyards from Argentina. Letters in Applied Microbiology, 2010, 51, no-no.	2.2	21
45	Natural Occurrence of Ochratoxin A in Musts, Wines and Grape Vine Fruits from Grapes Harvested in Argentina. Toxins, 2010, 2, 1984-1996.	3.4	20
46	Pathogenicity of <i>Fusarium graminearum</i> and <i>F. meridionale</i> on soybean pod blight and trichothecene accumulation. Plant Pathology, 2016, 65, 1492-1497.	2.4	18
47	Tolerance of triazole-based fungicides by biocontrol agents used to control Fusarium head blight in wheat in Argentina. Letters in Applied Microbiology, 2018, 66, 434-438.	2.2	18
48	Immunobiological Effects of Fumonisin B1 in Experimental Subchronic Mycotoxicoses in Rats. Vaccine Journal, 2002, 9, 149-155.	3.1	17
49	Fumonisin Production on Irradiated Corn Kernels: Effect of Inoculum Size. Journal of Food Protection, 1999, 62, 814-817.	1.7	16
50	In vitro control of growth and ochratoxin A production by butylated hydroxyanisole in Aspergillus section Nigri species. Food Control, 2009, 20, 709-715.	5.5	16
51	<i>Fusarium</i> species and moniliformin occurrence in sorghum grains used as ingredient for animal feed in Argentina. Journal of the Science of Food and Agriculture, 2019, 99, 47-54.	3.5	16
52	Molecular characterization and toxigenic profile of Aspergillus section Nigri populations isolated from the main grape-growing regions in Argentina. Journal of Applied Microbiology, 2011, 110, 445-454.	3.1	14
53	Factors affecting distribution and abundance of <i>Aspergillus</i> section <i>Nigri</i> in vineyard soils from grapevine growing regions of Argentina. Journal of the Science of Food and Agriculture, 2014, 94, 3001-3007.	3.5	14
54	Fumonisin and Beauvericin Chemotypes and Genotypes of the Sister Species <i>Fusarium subglutinans</i> and <i>Fusarium temperatum</i> . Applied and Environmental Microbiology, 2020, 86, .	3.1	14

#	Article	IF	CITATIONS
55	Population structure and genetic diversity of Fusarium graminearum sensu stricto, the main wheat pathogen producing Fusarium head blight in Argentina. European Journal of Plant Pathology, 2020, 156, 635-646.	1.7	10
56	<i>Fusarium graminearum</i> species complex occurrence on soybean and <i>F. graminearum</i> sensu stricto inoculum maintenance on residues in soybeanâ€wheat rotation under field conditions. Journal of Applied Microbiology, 2021, 130, 208-216.	3.1	9
57	Effect of water activity and temperature on growth and trichothecene production by Fusarium meridionale. International Journal of Food Microbiology, 2018, 285, 69-73.	4.7	8
58	MycoKey Round Table Discussions of Future Directions in Research on Chemical Detection Methods, Genetics and Biodiversity of Mycotoxins. Toxins, 2018, 10, 109.	3.4	8
59	Reduction of Fusarium proliferatum growth and fumonisin accumulation by ZnO nanoparticles both on a maize based medium and irradiated maize grains. International Journal of Food Microbiology, 2022, 363, 109510.	4.7	8
60	Effect of interacting conditions of water activity, temperature and incubation time on Fusarium thapsinum and Fusarium andiyazi growth and toxin production on sorghum grains. International Journal of Food Microbiology, 2020, 318, 108468.	4.7	7
61	Biological Species in the Gibberella fujikuroi Species Complex Isolated from Maize Kernels in Argentina. Plant Pathology Journal, 2006, 5, 350-355.	0.2	6
62	Combination of Bacillus velezensis RC218 and Chitosan to Control Fusarium Head Blight on Bread and Durum Wheat under Greenhouse and Field Conditions. Toxins, 2022, 14, 499.	3.4	6
63	Reprint of "An integrated dual strategy to control Fusarium graminearum sensu stricto by the biocontrol agent Streptomyces sp. RC 87B under field conditions― Plant Gene, 2017, 11, 2-7.	2.3	5
64	Effects of water activity and temperature on fusaric and fusarinolic acid production by Fusarium temperatum. Food Control, 2020, 114, 107263.	5.5	5
65	Ecophysiology ofFusarium temperatumisolated from maize in Argentina. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2015, 33, 1-10.	2.3	4
66	Fusarium and Fumonisins in Maize in South America. , 2009, , 179-200.		4
67	Spray-drying process as a suitable tool for the formulation of <i>Bacillus velezensis</i> RC218, a proved biocontrol agent to reduce Fusarium Head Blight and deoxynivalenol accumulation in wheat. Biocontrol Science and Technology, 2020, 30, 329-338.	1.3	3
68	<i>Fusarium chaquense</i> , sp. nov, a novel type A trichothecene–producing species from native grasses in a wetland ecosystem in Argentina. Mycologia, 2022, 114, 46-62.	1.9	3
69	Aspergillus and Ochratoxin A in Latin America. , 2016, , 265-287.		2
70	<i>Evaluación del potencial de dos cepas de Kluyveromyces thermotolerans</i> como agentes de biocontrol de <i>Aspergillus</i> sección <i>Nigri</i> y reducción en la acumulación de ocratoxina en viñedos. , 2014, , .		0