
John F Disterhoft

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6615049/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dietâ€induced Alzheimer'sâ€like syndrome in the rabbit. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2022, 8, e12241.	1.8	4
2	Aging-Related Alterations to Persistent Firing in the Lateral Entorhinal Cortex Contribute to Deficits in Temporal Associative Memory. Frontiers in Aging Neuroscience, 2022, 14, 838513.	1.7	1
3	<i>In Vivo</i> Multi-Day Calcium Imaging of CA1 Hippocampus in Freely Moving Rats Reveals a High Preponderance of Place Cells with Consistent Place Fields. Journal of Neuroscience, 2022, 42, 4538-4554.	1.7	23
4	Sex-Dependent Effects of Chronic Microdrive Implantation on Acquisition of Trace Eyeblink Conditioning. Neurobiology of Learning and Memory, 2022, 193, 107649.	1.0	1
5	Detection of memory―and learningâ€related brain connectivity changes following trace eyeblinkâ€conditioning using restingâ€state functional magnetic resonance imaging in the awake rabbit. Journal of Comparative Neurology, 2021, 529, 1597-1606.	0.9	2
6	Intact Female Mice Acquire Trace Eyeblink Conditioning Faster than Male and Ovariectomized Female Mice. ENeuro, 2021, 8, ENEURO.0199-20.2021.	0.9	5
7	Cognitive aging is associated with redistribution of synaptic weights in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	22
8	Variability in sub-threshold signaling linked to Alzheimer's disease emerges with age and amyloid plaque deposition in mouse ventral CA1 pyramidal neurons. Neurobiology of Aging, 2021, 106, 207-222.	1.5	5
9	Learning and aging affect neuronal excitability and learning. Neurobiology of Learning and Memory, 2020, 167, 107133.	1.0	20
10	Conditioned Contextual Freezing is A Neurobehavioral Biomarker of Axonal Injury Indicated by Reduced Fractional Anisotropy in A Mouse Model of Blast-Induced Mild Traumatic Brain Injury. Shock, 2020, 53, 744-753.	1.0	9
11	Aβ oligomer induced cognitive impairment and evaluation of ACU193â€MNSâ€based MRI in rabbit. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2020, 6, e12087.	1.8	4
12	Why is synaptic plasticity not enough?. Neurobiology of Learning and Memory, 2020, 176, 107336.	1.0	5
13	Intrinsic Excitability Increase in Cerebellar Purkinje Cells after Delay Eye-Blink Conditioning in Mice. Journal of Neuroscience, 2020, 40, 2038-2046.	1.7	34
14	Contingency awareness, aging, and the parietal lobe. Neurobiology of Aging, 2020, 91, 125-135.	1.5	3
15	Persistent firing in LEC III neurons is differentially modulated by learning and aging. ELife, 2020, 9, .	2.8	15
16	Cover Image, Volume 29, Issue 6. Hippocampus, 2019, 29, C1.	0.9	0
17	How do we validate approaches that aim to harness reserve to improve the aging brain?. Neurobiology of Aging, 2019, 83, 145-149.	1.5	1
18	Differential responsivity of neurons in perirhinal cortex, lateral entorhinal cortex, and dentate gyrus during timeâ€bridging learning. Hippocampus, 2019, 29, 511-526.	0.9	16

#	Article	IF	CITATIONS
19	Genetic Ablation of Neural Progenitor Cells Impairs Acquisition of Trace Eyeblink Conditioning. ENeuro, 2019, 6, ENEURO.0251-19.2019.	0.9	4
20	The rabbit as a behavioral model system for magnetic resonance imaging. Journal of Neuroscience Methods, 2018, 300, 196-205.	1.3	10
21	Store depletion-induced h-channel plasticity rescues a channelopathy linked to Alzheimer's disease. Neurobiology of Learning and Memory, 2018, 154, 141-157.	1.0	17
22	The Development of Rapastinel (Formerly GLYX-13); A Rapid Acting and Long Lasting Antidepressant. Current Neuropharmacology, 2017, 15, 47-56.	1.4	75
23	Building Bridges through Science. Neuron, 2017, 96, 730-735.	3.8	2
24	CREB, cellular excitability, and cognition: Implications for aging. Behavioural Brain Research, 2017, 322, 206-211.	1.2	46
25	Eyeblink Conditioning – A Behavioral Model of Procedural and Declarative Learning. , 2017, , 327-355.		0
26	CREB overexpression in dorsal CA1 ameliorates long-term memory deficits in aged rats. ELife, 2017, 6, .	2.8	46
27	Intrinsic Hippocampal Excitability Changes of Opposite Signs and Different Origins in CA1 and CA3 Pyramidal Neurons Underlie Aging-Related Cognitive Deficits. Frontiers in Systems Neuroscience, 2016, 10, 52.	1.2	56
28	Whisker-signaled Eyeblink Classical Conditioning in Head-fixed Mice. Journal of Visualized Experiments, 2016, , e53310.	0.2	8
29	Intrinsic connectivity of neural networks in the awake rabbit. NeuroImage, 2016, 129, 260-267.	2.1	24
30	Pretrial functional connectivity differentiates behavioral outcomes during trace eyeblink conditioning in the rabbit. Learning and Memory, 2016, 23, 161-168.	0.5	4
31	Activity-induced manganese-dependent MRI (AIM-MRI) and functional MRI in awake rabbits during somatosensory stimulation. Neurolmage, 2016, 126, 72-80.	2.1	12
32	Robust hippocampal responsivity during retrieval of consolidated associative memory. Hippocampus, 2015, 25, 655-669.	0.9	34
33	The impact of hippocampal lesions on trace-eyeblink conditioning and forebrain–cerebellar interactions Behavioral Neuroscience, 2015, 129, 512-522.	0.6	27
34	Hippocampectomy disrupts trace eye-blink conditioning in rabbits Behavioral Neuroscience, 2015, 129, 523-532.	0.6	234
35	Eyeblink Conditioning and Novel Object Recognition in the Rabbit: Behavioral Paradigms for Assaying Psychiatric Diseases. Frontiers in Psychiatry, 2015, 6, 142.	1.3	12
36	Aging-Related Hyperexcitability in CA3 Pyramidal Neurons Is Mediated by Enhanced A-Type K ⁺ Channel Function and Expression. Journal of Neuroscience, 2015, 35, 13206-13218.	1.7	85

#	Article	IF	CITATIONS
37	Rapastinel (GLYX-13) has therapeutic potential for the treatment of post-traumatic stress disorder: Characterization of a NMDA receptor-mediated metaplasticity process in the medial prefrontal cortex of rats. Behavioural Brain Research, 2015, 294, 177-185.	1.2	50
38	The long-lasting antidepressant effects of rapastinel (GLYX-13) are associated with a metaplasticity process in the medial prefrontal cortex and hippocampus. Neuroscience, 2015, 308, 202-211.	1.1	72
39	Increased Excitability of Both Principal Neurons and Interneurons during Associative Learning. Neuroscientist, 2015, 21, 372-384.	2.6	30
40	Age-related impairments on one hippocampal-dependent task predict impairments on a subsequent hippocampal-dependent task Behavioral Neuroscience, 2014, 128, 676-688.	0.6	11
41	Functional MRI of cerebellar activity during eyeblink classical conditioning in children and adults. Human Brain Mapping, 2014, 35, 1390-1403.	1.9	38
42	GLYX-13, an NMDA receptor glycine site functional partial agonist enhances cognition and produces antidepressant effects without the psychotomimetic side effects of NMDA receptor antagonists. Expert Opinion on Investigational Drugs, 2014, 23, 243-254.	1.9	107
43	Functional Reorganization of a Prefrontal Cortical Network Mediating Consolidation of Trace Eyeblink Conditioning. Journal of Neuroscience, 2014, 34, 1432-1445.	1.7	59
44	Surface <scp>L</scp> â€ŧype <scp>C</scp> a ²⁺ channel expression levels are increased in aged hippocampus. Aging Cell, 2014, 13, 111-120.	3.0	43
45	Dendritic spinopathy in transgenic mice expressing ALS/dementia-linked mutant <i>UBQLN2</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14524-14529.	3.3	68
46	Caudate Nucleus in Retrieval of Trace Eyeblink Conditioning after Consolidation. Journal of Neuroscience, 2013, 33, 2828-2836.	1.7	10
47	Learning Increases Intrinsic Excitability of Hippocampal Interneurons. Journal of Neuroscience, 2013, 33, 5499-5506.	1.7	66
48	Altered Calcium Metabolism in Aging CA1 Hippocampal Pyramidal Neurons. Journal of Neuroscience, 2013, 33, 7905-7911.	1.7	72
49	Perirhinal and postrhinal, but not lateral entorhinal, cortices are essential for acquisition of trace eyeblink conditioning. Learning and Memory, 2013, 20, 80-84.	0.5	25
50	Increasing SK2 channel activity impairs associative learning. Journal of Neurophysiology, 2012, 108, 863-870.	0.9	40
51	Infragranular barrel cortex activity is enhanced with learning. Journal of Neurophysiology, 2012, 108, 1278-1287.	0.9	13
52	A MRI-compatible system for whisker stimulation. Journal of Neuroscience Methods, 2012, 205, 305-311.	1.3	12
53	The N-methyl-d-aspartate receptor modulator GLYX-13 enhances learning and memory, in young adult and learning impaired aging rats. Neurobiology of Aging, 2011, 32, 698-706.	1.5	82
54	Mechanisms underlying basal and learning-related intrinsic excitability in a mouse model of Alzheimer's disease. Neurobiology of Aging, 2011, 32, 1452-1465.	1.5	84

#	Article	IF	CITATIONS
55	Age-related deficits in a forebrain-dependent task, trace-eyeblink conditioning. Neurobiology of Aging, 2011, 32, 1915-1922.	1.5	19
56	Positive emotional learning is regulated in the medial prefrontal cortex by GluN2B-containing NMDA receptors. Neuroscience, 2011, 192, 515-523.	1.1	52
57	Physiological and anatomical studies of associative learning: Convergence with learning studies of W.T. Greenough. Developmental Psychobiology, 2011, 53, 489-504.	0.9	2
58	Exploring prefrontal cortical memory mechanisms with eyeblink conditioning Behavioral Neuroscience, 2011, 125, 318-326.	0.6	91
59	Reevaluating hippocampus-dependent learning in FVB/N mice Behavioral Neuroscience, 2011, 125, 871-878.	0.6	24
60	The effects of aging in delay and trace human eyeblink conditioning Psychology and Aging, 2010, 25, 684-690.	1.4	21
61	Learning and aging related changes in intrinsic neuronal excitability. Frontiers in Aging Neuroscience, 2010, 2, 2.	1.7	104
62	Cellular mechanisms for altered learning in aging. Future Neurology, 2010, 5, 147-155.	0.9	8
63	Synaptic strength and postsynaptically silent synapses through advanced aging in rat hippocampal CA1 pyramidal neurons. Neurobiology of Aging, 2010, 31, 813-825.	1.5	33
64	BMP Signaling Mediates Effects of Exercise on Hippocampal Neurogenesis and Cognition in Mice. PLoS ONE, 2009, 4, e7506.	1.1	97
65	Memory deficits are associated with impaired ability to modulate neuronal excitability in middle-aged mice. Learning and Memory, 2009, 16, 362-366.	0.5	98
66	Learning-related postburst afterhyperpolarization reduction in CA1 pyramidal neurons is mediated by protein kinase A. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1620-1625.	3.3	57
67	Blocking the BK channel impedes acquisition of trace eyeblink conditioning. Learning and Memory, 2009, 16, 106-109.	0.5	40
68	Caudate Nucleus Is Critically Involved in Trace Eyeblink Conditioning. Journal of Neuroscience, 2009, 29, 14511-14520.	1.7	26
69	The Fast and Slow Afterhyperpolarizations Are Differentially Modulated in Hippocampal Neurons by Aging and Learning. Journal of Neuroscience, 2009, 29, 4750-4755.	1.7	98
70	Balanced gene regulation by an embryonic brain ncRNA is critical for adult hippocampal GABA circuitry. Nature Neuroscience, 2009, 12, 1020-1027.	7.1	355
71	A novel method for precisely timed stimulation of mouse whiskers in a freely moving preparation: Application for delivery of the conditioned stimulus in trace eyeblink conditioning. Journal of Neuroscience Methods, 2009, 177, 434-439.	1.3	18
72	Autophosphorylation of αCaMKII downregulates excitability of CA1 pyramidal neurons following synaptic stimulation. Neurobiology of Learning and Memory, 2009, 92, 120-123.	1.0	18

#	Article	IF	CITATIONS
73	Kalirin regulates cortical spine morphogenesis and disease-related behavioral phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13058-13063.	3.3	150
74	Intrinsic Neuronal Excitability Is Reversibly Altered by a Single Experience in Fear Conditioning. Journal of Neurophysiology, 2009, 102, 2763-2770.	0.9	76
75	Evoking blinks with natural stimulation and detecting them with a noninvasive optical device: A simple, inexpensive method for use with freely moving animals. Journal of Neuroscience Methods, 2008, 173, 108-113.	1.3	10
76	Enhanced neuronal excitability in rat CA1 pyramidal neurons following trace eyeblink conditioning acquisition is not due to alterations in IM. Neurobiology of Learning and Memory, 2008, 89, 125-133.	1.0	14
77	Where is the trace in trace conditioning?. Trends in Neurosciences, 2008, 31, 105-112.	4.2	207
78	Neural substrates underlying human delay and trace eyeblink conditioning. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8108-8113.	3.3	196
79	Functional Magnetic Resonance Imaging of Delay and Trace Eyeblink Conditioning in the Primary Visual Cortex of the Rabbit. Journal of Neuroscience, 2008, 28, 4974-4981.	1.7	20
80	The BK-mediated fAHP is modulated by learning a hippocampus-dependent task. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15154-15159.	3.3	85
81	Coupling of L-Type Ca ²⁺ Channels to K _V 7/KCNQ Channels Creates a Novel, Activity-Dependent, Homeostatic Intrinsic Plasticity. Journal of Neurophysiology, 2008, 100, 1897-1908.	0.9	47
82	Procedural memory system supports single cue trace eyeblink conditioning in medial temporal lobe amnesia Neuropsychology, 2008, 22, 278-282.	1.0	4
83	Delay discrimination and reversal eyeblink classical conditioning in abstinent chronic alcoholics Neuropsychology, 2008, 22, 196-208.	1.0	44
84	Cortical barrel lesions impair whisker-CS trace eyeblink conditioning. Learning and Memory, 2007, 14, 94-100.	0.5	61
85	Connections of the caudal anterior cingulate cortex in rabbit: Neural circuitry participating in the acquisition of trace eyeblink conditioning. Neuroscience, 2007, 145, 288-302.	1.1	44
86	Stability and plasticity of intrinsic membrane properties in hippocampal CA1 pyramidal neurons: effects of internal anions. Journal of Physiology, 2007, 578, 799-818.	1.3	66
87	Alterations in intrinsic neuronal excitability during normal aging. Aging Cell, 2007, 6, 327-336.	3.0	116
88	BACE1 gene deletion prevents neuron loss and memory deficits in 5XFAD APP/PS1 transgenic mice. Neurobiology of Disease, 2007, 26, 134-145.	2.1	272
89	Galantamine increases excitability of CA1 hippocampal pyramidal neurons. Neuroscience, 2006, 137, 113-123.	1.1	24
90	Comparisons of dorsal and ventral hippocampus cornu ammonis region 1 pyramidal neuron activity during trace eye-blink conditioning in the rabbit. Neuroscience, 2006, 141, 1123-1137.	1.1	52

#	Article	IF	CITATIONS
91	Learning, aging and intrinsic neuronal plasticity. Trends in Neurosciences, 2006, 29, 587-599.	4.2	198
92	Temporal memory deficits in Alzheimer's mouse models: rescue by genetic deletion of BACE1. European Journal of Neuroscience, 2006, 23, 251-260.	1.2	256
93	Differential effects of αCaMKII mutation on hippocampal learning and changes in intrinsic neuronal excitability. European Journal of Neuroscience, 2006, 23, 2235-2240.	1.2	34
94	Pharmacological and molecular enhancement of learning in aging and Alzheimer's disease. Journal of Physiology (Paris), 2006, 99, 180-192.	2.1	58
95	Simultaneous training on two hippocampus-dependent tasks facilitates acquisition of trace eyeblink conditioning. Learning and Memory, 2006, 13, 201-207.	0.5	19
96	Vibrissa-Signaled Eyeblink Conditioning Induces Somatosensory Cortical Plasticity. Journal of Neuroscience, 2006, 26, 6062-6068.	1.7	59
97	Intraneuronal beta-Amyloid Aggregates, Neurodegeneration, and Neuron Loss in Transgenic Mice with Five Familial Alzheimer's Disease Mutations: Potential Factors in Amyloid Plaque Formation. Journal of Neuroscience, 2006, 26, 10129-10140.	1.7	2,607
98	Forebrain-Cerebellar Interactions During Learning. Cellscience, 2006, 3, 200-230.	0.3	7
99	Trace Eyeblink Conditioning in Abstinent Alcoholic Individuals: Effects of Complex Task Demands and Prior Conditioning Neuropsychology, 2005, 19, 159-170.	1.0	14
100	Behavioral deficits associated with fetal alcohol exposure are reversed by prenatal thyroid hormone treatment: a role for maternal thyroid hormone deficiency in FAE. Molecular Psychiatry, 2005, 10, 961-971.	4.1	74
101	A fiber optic-based system for behavioral eyeblink measurement in a MRI environment. Journal of Neuroscience Methods, 2005, 141, 83-87.	1.3	14
102	Acute stress facilitates trace eyeblink conditioning in C57BL/6 male mice and increases the excitability of their CA1 pyramidal neurons. Learning and Memory, 2005, 12, 138-143.	0.5	36
103	Trace eyeblink conditioning requires the hippocampus but not autophosphorylation of ÂCaMKII in mice. Learning and Memory, 2005, 12, 211-215.	0.5	22
104	GLYX-13: A monoclonal antibody-derived peptide that acts as an N-methyl-d-aspartate receptor modulator. Neuropharmacology, 2005, 49, 1077-1087.	2.0	86
105	Cognitive Neuroscience. , 2005, , 341-349.		1
106	Slow Afterhyperpolarization Governs the Development of NMDA Receptor–Dependent Afterdepolarization in CA1 Pyramidal Neurons During Synaptic Stimulation. Journal of Neurophysiology, 2004, 92, 2346-2356.	0.9	59
107	Galantamine Facilitates Acquisition of Hippocampus-Dependent Trace Eyeblink Conditioning in Aged Rabbits. Learning and Memory, 2004, 11, 108-115.	0.5	36
108	Trace eyeblink conditioning is hippocampally dependent in mice. Hippocampus, 2004, 14, 58-65.	0.9	122

#	Article	IF	CITATIONS
109	Aging-related alterations in the distribution of Ca2+-dependent PKC isoforms in rabbit hippocampus. Hippocampus, 2004, 14, 849-860.	0.9	37
110	Aging, spatial learning, and total synapse number in the rat CA1 stratum radiatum. Neurobiology of Aging, 2004, 25, 407-416.	1.5	145
111	Biophysical alterations of hippocampal pyramidal neurons in learning, ageing and Alzheimer's disease. Ageing Research Reviews, 2004, 3, 383-406.	5.0	86
112	BACE1 Deficiency Rescues Memory Deficits and Cholinergic Dysfunction in a Mouse Model of Alzheimer's Disease. Neuron, 2004, 41, 27-33.	3.8	506
113	Lubeluzole and conditioned learning after cerebral ischemia. Experimental Brain Research, 2003, 152, 329-334.	0.7	8
114	Functional magnetic resonance imaging in the awake rabbit: a system for stimulus presentation and response detection during eyeblink conditioning. Journal of Neuroscience Methods, 2003, 130, 45-52.	1.3	8
115	Modulation of cholinergic transmission enhances excitability of hippocampal pyramidal neurons and ameliorates learning impairments in aging animals. Neurobiology of Learning and Memory, 2003, 80, 223-233.	1.0	29
116	Conditional Discrimination Learning in Patients With Bilateral Medial Temporal Lobe Amnesia Behavioral Neuroscience, 2003, 117, 1181-1195.	0.6	21
117	Watermaze Learning Enhances Excitability of CA1 Pyramidal Neurons. Journal of Neurophysiology, 2003, 90, 2171-2179.	0.9	152
118	Single Neurons in CA1 Hippocampus Encode Trace Interval Duration during Trace Heart Rate (Fear) Conditioning in Rabbit. Journal of Neuroscience, 2003, 23, 1535-1547.	1.7	159
119	Activity Profiles of Single Neurons in Caudal Anterior Cingulate Cortex During Trace Eyeblink Conditioning in the Rabbit. Journal of Neurophysiology, 2003, 90, 599-612.	0.9	81
120	fMRI of the Conscious Rabbit during Unilateral Classical Eyeblink Conditioning Reveals Bilateral Cerebellar Activation. Journal of Neuroscience, 2003, 23, 11753-11758.	1.7	64
121	Chapter 5 Calcium homeostasis and learning deficits in aging. Advances in Cell Aging and Gerontology, 2002, , 67-89.	0.1	0
122	Impaired Eyeblink Conditioning and Decreased Hippocampal Volume in PDAPP V717F Mice. Neurobiology of Disease, 2002, 11, 425-433.	2.1	65
123	Age-related biophysical alterations of hippocampal pyramidal neurons: implications for learning and memory. Ageing Research Reviews, 2002, 1, 181-207.	5.0	88
124	Age-Related Enhancement of the Slow Outward Calcium-Activated Potassium Current in Hippocampal CA1 Pyramidal Neurons <i>In Vitro</i> . Journal of Neuroscience, 2002, 22, 7234-7243.	1.7	153
125	Temporal Discrimination Learning in Abstinent Chronic Alcoholics. Alcoholism: Clinical and Experimental Research, 2002, 26, 804-811.	1.4	16
126	Temporal Discrimination Learning in Abstinent Chronic Alcoholics. Alcoholism: Clinical and Experimental Research, 2002, 26, 804-811.	1.4	10

8

#	Article	IF	CITATIONS
127	Cellular Alterations in Hippocampus During Acquisition and Consolidation of Hippocampus-Dependent Trace Eyeblink Conditioning. , 2002, , 313-334.		Ο
128	Temporal discrimination learning in abstinent chronic alcoholics. Alcoholism: Clinical and Experimental Research, 2002, 26, 804-11.	1.4	11
129	Age-related effects on eyeblink conditioning in the F344 × BN F1 hybrid rat. Neurobiology of Aging, 2001, 22, 1-8.	1.5	70
130	Associative Learning Elicits the Formation of Multiple-Synapse Boutons. Journal of Neuroscience, 2001, 21, 5568-5573.	1.7	226
131	Metrifonate Decreases s <i>I</i> _{AHP} in CA1 Pyramidal Neurons In Vitro. Journal of Neurophysiology, 2001, 85, 319-322.	0.9	38
132	Aging and Learning-Specific Changes in Single-Neuron Activity in CA1 Hippocampus During Rabbit Trace Eyeblink Conditioning. Journal of Neurophysiology, 2001, 86, 1839-1857.	0.9	74
133	Awareness in classical differential eyeblink conditioning in young and aging humans Behavioral Neuroscience, 2001, 115, 747-757.	0.6	86
134	Eyeblink conditioning in the rabbit (Oryctolagus cuniculus) with stimulation of the mystacial vibrissae as a conditioned stimulus. Behavioral Neuroscience, 2001, 115, 731-6.	0.6	18
135	Spared discrimination and impaired reversal eyeblink conditioning in patients with temporal lobe amnesia. Behavioral Neuroscience, 2001, 115, 1171-9.	0.6	7
136	Cerebellar cortical degeneration disrupts discrimination learning but not delay or trace classical eyeblink conditioning Neuropsychology, 2000, 14, 537-550.	1.0	20
137	Remodeling of hippocampal synapses after hippocampus-dependent associative learning. , 2000, 417, 49-59.		82
138	fMRI of visual system activation in the conscious rabbit. Magnetic Resonance in Medicine, 2000, 44, 474-478.	1.9	50
139	Neurotoxic lesions of the dorsal hippocampus disrupt auditory-cued trace heart rate (fear) conditioning in rabbits. Hippocampus, 2000, 10, 739-751.	0.9	78
140	Apamin increases excitability of CA1 hippocampal pyramidal neurons. Neuroscience Research Communications, 2000, 27, 135-142.	0.2	21
141	Increased Excitability of Aged Rabbit CA1 Neurons after Trace Eyeblink Conditioning. Journal of Neuroscience, 2000, 20, 5476-5482.	1.7	143
142	The M1 Muscarinic Agonist CI-1017 Facilitates Trace Eyeblink Conditioning in Aging Rabbits and Increases the Excitability of CA1 Pyramidal Neurons. Journal of Neuroscience, 2000, 20, 783-790.	1.7	82
143	Remodeling of hippocampal synapses after hippocampus-dependent associative learning. Journal of Comparative Neurology, 2000, 417, 49.	0.9	3
144	Cortical involvement in acquisition and extinction of trace eyeblink conditioning. Behavioral Neuroscience, 2000, 114, 1058-67.	0.6	129

#	Article	IF	CITATIONS
145	Protein Kinase C Signaling in Learning and Memory. , 2000, , 105-125.		0
146	Cerebellar cortical degeneration disrupts discrimination learning but not delay or trace classical eyeblink conditioning. Neuropsychology, 2000, 14, 537-50.	1.0	13
147	Metrifonate Increases Neuronal Excitability in CA1 Pyramidal Neurons from Both Young and Aging Rabbit Hippocampus. Journal of Neuroscience, 1999, 19, 1814-1823.	1.7	57
148	Hippocampectomy disrupts auditory trace fear conditioning and contextual fear conditioning in the rat. , 1999, 8, 638-646.		349
149	Hippocampal encoding of non-spatial trace conditioning. , 1999, 9, 385-396.		111
150	Hippocampal lesions prevent trace eyeblink conditioning in the freely moving rat. Behavioural Brain Research, 1999, 99, 123-132.	1.2	269
151	Cholinergic facilitation of trace eyeblink conditioning in aging rabbits. Life Sciences, 1999, 64, 541-548.	2.0	38
152	Effects of Hypothermia and Lamotrigine on Trace-Conditioned Learning after Global Cerebral Ischemia in Rabbits. Experimental Neurology, 1999, 159, 105-113.	2.0	11
153	Temporal discrimination learning in severe amnesic patients reveals an alteration in the timing of eyeblink conditioned responses Behavioral Neuroscience, 1999, 113, 10-18.	0.6	25
154	Trace eyeblink conditioning in the freely moving rat: optimizing the conditioning parameters. Behavioral Neuroscience, 1999, 113, 1100-5.	0.6	26
155	Temporal discrimination learning in severe amnesic patients reveals an alteration in the timing of eyeblink conditioned responses. Behavioral Neuroscience, 1999, 113, 10-8.	0.6	14
156	Spatial learning and memory in aging C57BL/6 mice. , 1998, 23, 77-92.		22
157	Activity of hippocampal pyramidal neurons during trace eyeblink conditioning. , 1998, 6, 192-209.		83
158	Conditioning, awareness, and the hippocampus. , 1998, 8, 620-626.		64
159	Lesions of the Caudal Area of Rabbit Medial Prefrontal Cortex Impair Trace Eyeblink Conditioning. Neurobiology of Learning and Memory, 1998, 69, 147-162.	1.0	181
160	Metrifonate improves associative learning and retention in aging rabbits Behavioral Neuroscience, 1997, 111, 1031-1040.	0.6	47
161	Impaired trace eyeblink conditioning in bilateral, medial-temporal lobe amnesia Behavioral Neuroscience, 1997, 111, 873-882.	0.6	217
162	Age- and dose-dependent facilitation of associative eyeblink conditioning by {d}-cycloserine in rabbits Behavioral Neuroscience, 1997, 111, 1303-1312.	0.6	60

#	Article	IF	CITATIONS
163	Learning-induced alterations in hippocampal PKC-immunoreactivity: A review and hypothesis of its functional significance. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1997, 21, 531-572.	2.5	65
164	Age-dependent changes in the immunoreactivity for neurofilaments in rabbit hippocampus. Neuroscience, 1997, 79, 103-116.	1.1	21
165	Sequence of Single Neuron Changes in CA1 Hippocampus of Rabbits During Acquisition of Trace Eyeblink Conditioned Responses. Journal of Neurophysiology, 1997, 78, 1030-1044.	0.9	218
166	Enhanced Synaptic Transmission in CA1 Hippocampus After Eyeblink Conditioning. Journal of Neurophysiology, 1997, 78, 1184-1187.	0.9	93
167	Metrifonate Treatment Enhances Acquisition of Eyeblink Conditioning in Aging Rabbits. Pharmacology Biochemistry and Behavior, 1997, 56, 103-110.	1.3	50
168	isoform-selective changes in PKC immunoreactivity after trace eyeblink conditioning in the rabbit? hippocampus. , 1997, 7, 271-285.		50
169	Trace eyeblink conditioning in rabbits demonstrates heterogeneity of learning ability both between and within age groups. Neurobiology of Aging, 1996, 17, 619-629.	1.5	108
170	Age-related loss of calcium binding proteins in rabbit hippocampus. Neurobiology of Aging, 1996, 17, 459-465.	1.5	65
171	Calcium-dependent afterhyperpolarization and learning in young and aging hippocampus. Life Sciences, 1996, 59, 413-420.	2.0	163
172	Trace Eyeblink Conditioning Increases CA1 Excitability in a Transient and Learning-Specific Manner. Journal of Neuroscience, 1996, 16, 5536-5546.	1.7	376
173	Functional Mapping of Human Learning: A Positron Emission Tomography Activation Study of Eyeblink Conditioning. Journal of Neuroscience, 1996, 16, 4032-4040.	1.7	210
174	Eyeblink conditioning, motor control, and the analysis of limbic-cerebellar interactions. Behavioral and Brain Sciences, 1996, 19, 479-481.	0.4	57
175	Analysis of neuro-behavioral Discoveryâ"¢ data on the Macintosh computer. Journal of Neuroscience Methods, 1996, 70, 131-140.	1.3	0
176	Intact delay-eyeblink classical conditioning in amnesia Behavioral Neuroscience, 1995, 109, 819-827.	0.6	255
177	Impaired Delay Eyeblink Conditioning in Amnesic Korsakoff s Patients and Recovered Alcoholics. Alcoholism: Clinical and Experimental Research, 1995, 19, 1127-1132.	1.4	97
178	Nimodipine decreases calcium action potentials in rabbit hippocampal CA1 neurons in an age-dependent and concentration-dependent manner. Hippocampus, 1994, 4, 11-17.	0.9	96
179	A system for quantitative analysis of associative learning. Part 1. Hardware interfaces with cross-species applications. Journal of Neuroscience Methods, 1994, 54, 109-117.	1.3	81
180	A system for quantitative analysis of associative learning. Part 2. Real-time software for MS-DOS microcomputers. Journal of Neuroscience Methods, 1994, 54, 119-130.	1.3	44

#	Article	IF	CITATIONS
181	Relation of Nimodipine Dose and Serum Concentration to Learning Enhancement in Aging Rabbits. Experimental Neurology, 1994, 127, 159-166.	2.0	44
182	The Calcium Rationale in Aging and Alzheimer's Disease. Annals of the New York Academy of Sciences, 1994, 747, 382-406.	1.8	125
183	Receptive fields of single cells from the face zone of the cat rostral dorsal accessory olive. Brain Research, 1993, 605, 207-213.	1.1	92
184	Functional Aspects of Calcium-Channel Modulation. Clinical Neuropharmacology, 1993, 16, S12-S24.	0.2	64
185	Hippocampus-dependent learning facilitated by a monoclonal antibody or D-cycloserine. Nature, 1992, 359, 638-641.	13.7	208
186	Nimodipine Improves Learning and Sensorimotor Behaviors in Aging Mammals. Advances in Behavioral Biology, 1992, , 227-240.	0.2	1
187	Learning and memory. Brain Research Reviews, 1991, 16, 193-220.	9.1	133
188	Learning-induced afterhyperpolarization reductions in hippocampus are specific for cell type and potassium conductance. Experimental Brain Research, 1990, 80, 456-462.	0.7	74
189	Hippocampectomy disrupts trace eye-blink conditioning in rabbits Behavioral Neuroscience, 1990, 104, 243-252.	0.6	731
190	Dietary nimodipine improves associative learning in aging rabbits. Neurobiology of Aging, 1990, 11, 659-661.	1.5	57
191	Nimodipine enhances spontaneous activity of hippocampal pyramidal neurons in aging rabbits at a dose that facilitates associative learning. Brain Research, 1990, 535, 119-130.	1.1	74
192	Nimodipine ameliorates aging-related changes in open-field behaviors of the rabbit. Experimental Aging Research, 1989, 15, 169-175.	0.6	26
193	Hippocampal lesions impair memory of short-delay conditioned eye blink in rabbits Behavioral Neuroscience, 1989, 103, 935-943.	0.6	170
194	AHP reductions in rabbit hippocampal neurons during conditioning correlate with acquisition of the learned response. Brain Research, 1988, 462, 118-125.	1.1	99
195	Conditioning-Specific Biophysical Alterations in Rabbit Hippocampus. , 1988, , 89-104.		10
196	Motoneuronal Control of Eye Retraction/Nictitating Membrane Extension in Rabbit. , 1986, , 197-208.		2
197	Connections of the rabbit abducens nucleus. Brain Research, 1985, 326, 172-178.	1.1	19
198	Eyeball retraction latency in the conscious rabbit measured with a new photodiode technique. Journal of Neuroscience Methods, 1984, 10, 29-39.	1.3	16

#	Article	IF	CITATIONS
199	The effect of auditory stimulus rate on [14C]2-deoxyglucose uptake in rabbit inferior colliculus. Brain Research, 1983, 279, 85-91.	1.1	12
200	Response plasticity of single neurons in rabbit auditory association cortex during tone-signalled learning. Brain Research, 1982, 246, 205-215.	1.1	101
201	Analyzing the Rabbit NM Conditioned Reflex Arc. Advances in Behavioral Biology, 1982, , 433-449.	0.2	6
202	Location of rabbit auditory cortex and description of single unit activity. Brain Research, 1981, 214, 275-286.	1.1	20
203	ANATOMICAL AND PHYSIOLOGICAL ANALYSES OF RABBIT NICTITATING MEMBRANE CONDITIONING. , 1981, , 129-144.		0
204	Neuronal morphology of the rabbit cochlear nucleus. Journal of Comparative Neurology, 1980, 192, 687-702.	0.9	53
205	Cochlear nucleus unit responses to pure tones in the unanesthetized rabbit. Experimental Neurology, 1980, 69, 576-588.	2.0	15
206	Neuron activity in rat hippocampus and motor cortex during discrimination reversal. Brain Research Bulletin, 1978, 3, 583-588.	1.4	21
207	Differentiated short latency response increases after conditioning in inferior colliculus neurons of alert rat. Brain Research, 1977, 130, 315-333.	1.1	48
208	Nictating membrane conditioning to tone in the immobilized albino rabbit. Brain Research, 1977, 137, 127-143.	1.1	206
209	Learning in the intact cockroach (Periplaneta americana) when placed in a punishment situation Journal of Comparative and Physiological Psychology, 1972, 79, 1-7.	1.8	7
210	An analysis of leg position learning in the cockroach yoked control. Physiology and Behavior, 1971, 7, 359-362.	1.0	11
211	"P-R―differences in intact cockroaches as a function of testing interval. Learning and Behavior, 1968, 12, 205-206.	0.6	14