## **Clayton E Mathews**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6614972/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Pancreas Whole Tissue Transcriptomics Highlights the Role of the Exocrine Pancreas in Patients With<br>Recently Diagnosed Type 1 Diabetes. Frontiers in Endocrinology, 2022, 13, 861985.                       | 3.5  | 0         |
| 2  | Influence of PTPN22 Allotypes on Innate and Adaptive Immune Function in Health and Disease. Frontiers in Immunology, 2021, 12, 636618.                                                                         | 4.8  | 21        |
| 3  | Low-Dose ATG/GCSF in Established Type 1 Diabetes: A Five-Year Follow-up Report. Diabetes, 2021, 70, 1123-1129.                                                                                                 | 0.6  | 11        |
| 4  | Proinsulin-Reactive CD4 T Cells in the Islets of Type 1 Diabetes Organ Donors. Frontiers in Endocrinology, 2021, 12, 622647.                                                                                   | 3.5  | 20        |
| 5  | Islet sympathetic innervation and islet neuropathology in patients with type 1 diabetes. Scientific Reports, 2021, 11, 6562.                                                                                   | 3.3  | 18        |
| 6  | Observing Islet Function and Islet-Immune Cell Interactions in Live Pancreatic Tissue Slices. Journal of Visualized Experiments, 2021, , .                                                                     | 0.3  | 7         |
| 7  | Overexpression of the <i>PTPN22</i> Autoimmune Risk Variant LYP-620W Fails to Restrain Human CD4+<br>T Cell Activation. Journal of Immunology, 2021, 207, 849-859.                                             | 0.8  | 7         |
| 8  | Protecting Stem Cell Derived Pancreatic Beta-Like Cells From Diabetogenic T Cell Recognition.<br>Frontiers in Endocrinology, 2021, 12, 707881.                                                                 | 3.5  | 24        |
| 9  | ENTPD3 Marks Mature Stem Cell–Derived β-Cells Formed by Self-Aggregation In Vitro. Diabetes, 2021, 70, 2554-2567.                                                                                              | 0.6  | 20        |
| 10 | Human islet T cells are highly reactive to preproinsulin in type 1 diabetes. Proceedings of the National<br>Academy of Sciences of the United States of America, 2021, 118, .                                  | 7.1  | 42        |
| 11 | Use of Induced Pluripotent Stem Cells to Build Isogenic Systems and Investigate Type 1 Diabetes.<br>Frontiers in Endocrinology, 2021, 12, 737276.                                                              | 3.5  | 8         |
| 12 | Comparing Beta Cell Preservation Across Clinical Trials in Recent-Onset Type 1 Diabetes. Diabetes<br>Technology and Therapeutics, 2020, 22, 948-953.                                                           | 4.4  | 41        |
| 13 | Branched chain amino acids and carbohydrate restriction exacerbate ketogenesis and hepatic mitochondrial oxidative dysfunction during NAFLD. FASEB Journal, 2020, 34, 14832-14849.                             | 0.5  | 19        |
| 14 | Disruption of hepatic one-carbon metabolism impairs mitochondrial function and enhances<br>macrophage activity in methionine–choline-deficient mice. Journal of Nutritional Biochemistry, 2020,<br>81, 108381. | 4.2  | 3         |
| 15 | NKG2D Signaling Within the Pancreatic Islets Reduces NOD Diabetes and Increases Protective Central<br>Memory CD8+ T-Cell Numbers. Diabetes, 2020, 69, 1749-1762.                                               | 0.6  | 4         |
| 16 | Innate inflammation drives NK cell activation to impair Treg activity. Journal of Autoimmunity, 2020,<br>108, 102417.                                                                                          | 6.5  | 36        |
| 17 | Lipid mediators and biomarkers associated with type 1 diabetes development. JCI Insight, 2020, 5, .                                                                                                            | 5.0  | 15        |
| 18 | Position β57 of I-A <sup>g7</sup> controls early anti-insulin responses in NOD mice, linking an MHC susceptibility allele to type 1 diabetes onset. Science Immunology, 2019, 4, .                             | 11.9 | 37        |

| #  | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Neutrophil Cytosolic Factor 1 in Dendritic Cells Promotes Autoreactive CD8+ T Cell Activation via<br>Cross-Presentation in Type 1 Diabetes. Frontiers in Immunology, 2019, 10, 952.                                 | 4.8  | 14        |
| 20 | Boosting to Amplify Signal with Isobaric Labeling (BASIL) Strategy for Comprehensive Quantitative<br>Phosphoproteomic Characterization of Small Populations of Cells. Analytical Chemistry, 2019, 91,<br>5794-5801. | 6.5  | 86        |
| 21 | Nanodroplet processing platform for deep and quantitative proteome profiling of 10–100 mammalian cells. Nature Communications, 2018, 9, 882.                                                                        | 12.8 | 384       |
| 22 | Abnormal islet sphingolipid metabolism in type 1 diabetes. Diabetologia, 2018, 61, 1650-1661.                                                                                                                       | 6.3  | 56        |
| 23 | Loss of B-Cell Anergy in Type 1 Diabetes Is Associated With High-Risk HLA and Non-HLA Disease<br>Susceptibility Alleles. Diabetes, 2018, 67, 697-703.                                                               | 0.6  | 24        |
| 24 | Mitochondrial Reactive Oxygen Species and Type 1 Diabetes. Antioxidants and Redox Signaling, 2018, 29, 1361-1372.                                                                                                   | 5.4  | 70        |
| 25 | Application of a Genetic Risk Score to Racially Diverse Type 1 Diabetes Populations Demonstrates the<br>Need for Diversity in Risk-Modeling. Scientific Reports, 2018, 8, 4529.                                     | 3.3  | 59        |
| 26 | Sixteen diverse laboratory mouse reference genomes define strain-specific haplotypes and novel functional loci. Nature Genetics, 2018, 50, 1574-1583.                                                               | 21.4 | 169       |
| 27 | The Role of NOD Mice in Type 1 Diabetes Research: Lessons from the Past and Recommendations for the Future. Frontiers in Endocrinology, 2018, 9, 51.                                                                | 3.5  | 99        |
| 28 | Protective Role of Myeloid Cells Expressing a G-CSF Receptor Polymorphism in an Induced Model of Lupus. Frontiers in Immunology, 2018, 9, 1053.                                                                     | 4.8  | 4         |
| 29 | Nanowell-mediated two-dimensional liquid chromatography enables deep proteome profiling of<br><1000 mammalian cells. Chemical Science, 2018, 9, 6944-6951.                                                          | 7.4  | 33        |
| 30 | Mitochondrial ATP transporter depletion protects mice against liver steatosis and insulin resistance.<br>Nature Communications, 2017, 8, 14477.                                                                     | 12.8 | 55        |
| 31 | Interferon-Î <sup>3</sup> Limits Diabetogenic CD8+ T-Cell Effector Responses in Type 1 Diabetes. Diabetes, 2017, 66,<br>710-721.                                                                                    | 0.6  | 26        |
| 32 | Islet-Derived CD4 T Cells Targeting Proinsulin in Human Autoimmune Diabetes. Diabetes, 2017, 66,<br>722-734.                                                                                                        | 0.6  | 154       |
| 33 | Type 1 Interferons Potentiate Human CD8+ T-Cell Cytotoxicity Through a STAT4- and Granzyme<br>B–Dependent Pathway. Diabetes, 2017, 66, 3061-3071.                                                                   | 0.6  | 56        |
| 34 | T cells display mitochondria hyperpolarization in human type 1 diabetes. Scientific Reports, 2017, 7,<br>10835.                                                                                                     | 3.3  | 34        |
| 35 | The Type 1 Diabetes–Resistance Locus <i>Idd22</i> Controls Trafficking of Autoreactive CTLs into the Pancreatic Islets of NOD Mice. Journal of Immunology, 2017, 199, 3991-4000.                                    | 0.8  | 11        |
| 36 | Human Pancreatic Cancer Cells Induce a MyD88-Dependent Stromal Response to Promote a<br>Tumor-Tolerant Immune Microenvironment. Cancer Research, 2017, 77, 672-683.                                                 | 0.9  | 24        |

| #  | Article                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Type I Interferon Is a Catastrophic Feature of the Diabetic Islet Microenvironment. Frontiers in Endocrinology, 2017, 8, 232.                                                                                                                      | 3.5  | 44        |
| 38 | Avidity and Bystander Suppressive Capacity of Human Regulatory T Cells Expressing De Novo<br>Autoreactive T-Cell Receptors in Type 1 Diabetes. Frontiers in Immunology, 2017, 8, 1313.                                                             | 4.8  | 81        |
| 39 | Antithymocyte Globulin Plus G-CSF Combination Therapy Leads to Sustained Immunomodulatory and<br>Metabolic Effects in a Subset of Responders With Established Type 1 Diabetes. Diabetes, 2016, 65,<br>3765-3775.                                   | 0.6  | 62        |
| 40 | Islet cell hyperexpression of HLA class I antigens: a defining feature in type 1 diabetes. Diabetologia,<br>2016, 59, 2448-2458.                                                                                                                   | 6.3  | 214       |
| 41 | Pancreas-enriched miRNAs are altered in the circulation of subjects with diabetes: a pilot cross-sectional study. Scientific Reports, 2016, 6, 31479.                                                                                              | 3.3  | 134       |
| 42 | Analysis of self-antigen specificity of islet-infiltrating T cells from human donors with type 1 diabetes.<br>Nature Medicine, 2016, 22, 1482-1487.                                                                                                | 30.7 | 232       |
| 43 | Genetic risk analysis of a patient with fulminant autoimmune type 1 diabetes mellitus secondary to combination ipilimumab and nivolumab immunotherapy. , 2016, 4, 89.                                                                              |      | 81        |
| 44 | Respiration and substrate transport rates as well as reactive oxygen species production distinguish mitochondria from brain and liver. BMC Biochemistry, 2015, 16, 22.                                                                             | 4.4  | 19        |
| 45 | Liquid Chromatography-Mass Spectrometry Metabolic and Lipidomic Sample Preparation Workflow<br>for Suspension-Cultured Mammalian Cells using Jurkat T lymphocyte Cells. Journal of Proteomics and<br>Bioinformatics, 2015, 08, 126-132.            | 0.4  | 28        |
| 46 | How the Location of Superoxide Generation Influences the β-Cell Response to Nitric Oxide. Journal of<br>Biological Chemistry, 2015, 290, 7952-7960.                                                                                                | 3.4  | 19        |
| 47 | Combination Therapy Reverses Hyperglycemia in NOD Mice With Established Type 1 Diabetes. Diabetes, 2015, 64, 3873-3884.                                                                                                                            | 0.6  | 22        |
| 48 | Association of the mt-ND2 5178A/C polymorphism with Parkinson's disease. Neuroscience Letters, 2015, 587, 98-101.                                                                                                                                  | 2.1  | 11        |
| 49 | Mechanisms of Tumor Necrosis Factor α Antagonist–Induced Lupus in a Murine Model. Arthritis and<br>Rheumatology, 2015, 67, 225-237.                                                                                                                | 5.6  | 19        |
| 50 | Reply to Gurgul-Convey and Lenzen: Cytokines, Nitric Oxide, and β-Cells. Journal of Biological Chemistry, 2015, 290, 10571.                                                                                                                        | 3.4  | 1         |
| 51 | Acute Versus Progressive Onset of Diabetes in NOD Mice: Potential Implications for Therapeutic<br>Interventions in Type 1 Diabetes. Diabetes, 2015, 64, 3885-3890.                                                                                 | 0.6  | 42        |
| 52 | Repurposed biological scaffolds: kidney to pancreas. Organogenesis, 2015, 11, 47-57.                                                                                                                                                               | 1.2  | 22        |
| 53 | Distinct differences in the responses of the human pancreatic β-cell line EndoC-βH1 and human islets to<br>proinflammatory cytokines. American Journal of Physiology - Regulatory Integrative and Comparative<br>Physiology, 2015, 309, R525-R534. | 1.8  | 39        |
| 54 | Loss of NOX-Derived Superoxide Exacerbates Diabetogenic CD4 T-Cell Effector Responses in Type 1<br>Diabetes. Diabetes, 2015, 64, 4171-4183.                                                                                                        | 0.6  | 18        |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Anti-thymocyte globulin/G-CSF treatment preserves β cell function in patients with established type 1<br>diabetes. Journal of Clinical Investigation, 2015, 125, 448-455.                                                          | 8.2 | 140       |
| 56 | Metabolic Abnormalities in the Pathogenesis of Type 1 Diabetes. Current Diabetes Reports, 2014, 14, 519.                                                                                                                           | 4.2 | 6         |
| 57 | In search of a surrogate: engineering human beta cell lines for therapy. Trends in Endocrinology and<br>Metabolism, 2014, 25, 378-380.                                                                                             | 7.1 | 10        |
| 58 | Use of Chemical Probes to Detect Mitochondrial ROS by Flow Cytometry and Spectrofluorometry.<br>Methods in Enzymology, 2014, 542, 223-241.                                                                                         | 1.0 | 7         |
| 59 | Do β-Cells Generate Peroxynitrite in Response to Cytokine Treatment?. Journal of Biological Chemistry, 2013, 288, 36567-36578.                                                                                                     | 3.4 | 23        |
| 60 | Pleiotropic IFN-Dependent and -Independent Effects of IRF5 on the Pathogenesis of Experimental Lupus.<br>Journal of Immunology, 2012, 188, 4113-4121.                                                                              | 0.8 | 53        |
| 61 | Immuneâ€mediated βâ€cell death in type 1 diabetes: lessons from human βâ€cell lines. European Journal of<br>Clinical Investigation, 2012, 42, 1244-1251.                                                                           | 3.4 | 25        |
| 62 | Inherited Â-Cell Dysfunction in Lean Individuals With Type 2 Diabetes. Diabetes, 2012, 61, 1659-1660.                                                                                                                              | 0.6 | 11        |
| 63 | Oxidative Stress and Beta Cell Dysfunction. Methods in Molecular Biology, 2012, 900, 347-362.                                                                                                                                      | 0.9 | 23        |
| 64 | The use of leptin as treatment for type 1 diabetes mellitus: counterpoint. Pediatric Diabetes, 2012, 13,<br>74-76.                                                                                                                 | 2.9 | 2         |
| 65 | Comparative Genetics: Synergizing Human and NOD Mouse Studies for Identifying Genetic Causation of<br>Type 1 Diabetes. Review of Diabetic Studies, 2012, 9, 169-187.                                                               | 1.3 | 32        |
| 66 | <i>mt-Nd2a</i> Modifies Resistance Against Autoimmune Type 1 Diabetes in NOD Mice at the Level of the Pancreatic β-Cell. Diabetes, 2011, 60, 355-359.                                                                              | 0.6 | 28        |
| 67 | Development of diabetes in lean Ncb5or-null mice is associated with manifestations of endoplasmic reticulum and oxidative stress in beta cells. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1532-1541. | 3.8 | 17        |
| 68 | Increased superoxide accumulation in pyruvate dehydrogenase complex deficient fibroblasts.<br>Molecular Genetics and Metabolism, 2011, 104, 255-260.                                                                               | 1.1 | 24        |
| 69 | Role of the Mitochondria in Immune-Mediated Apoptotic Death of the Human Pancreatic β Cell Line<br>βLox5. PLoS ONE, 2011, 6, e20617.                                                                                               | 2.5 | 24        |
| 70 | Methods to Assess Beta Cell Death Mediated by Cytotoxic T Lymphocytes. Journal of Visualized Experiments, 2011, , .                                                                                                                | 0.3 | 11        |
| 71 | Role of genetics in resistance to type 1 diabetes. Diabetes/Metabolism Research and Reviews, 2011, 27, 849-853.                                                                                                                    | 4.0 | 7         |
| 72 | Progressive Erosion of β-Cell Function Precedes the Onset of Hyperglycemia in the NOD Mouse Model of Type 1 Diabetes. Diabetes, 2011, 60, 2086-2091.                                                                               | 0.6 | 64        |

| #  | Article                                                                                                                                                                                                        | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Critical Role for CXC Ligand 10/CXC Receptor 3 Signaling in the Murine Neonatal Response to Sepsis.<br>Infection and Immunity, 2011, 79, 2746-2754.                                                            | 2.2 | 40        |
| 74 | Superoxide Production by Macrophages and T Cells Is Critical for the Induction of Autoreactivity and Type 1 Diabetes. Diabetes, 2011, 60, 2144-2151.                                                           | 0.6 | 85        |
| 75 | Neutrophil Mobilization from the Bone Marrow during Polymicrobial Sepsis Is Dependent on CXCL12<br>Signaling. Journal of Immunology, 2011, 187, 911-918.                                                       | 0.8 | 117       |
| 76 | Sepsis Induces Early Alterations in Innate Immunity That Impact Mortality to Secondary Infection.<br>Journal of Immunology, 2011, 186, 195-202.                                                                | 0.8 | 137       |
| 77 | NADPH Oxidase Deficiency Regulates Th Lineage Commitment and Modulates Autoimmunity. Journal of<br>Immunology, 2010, 185, 5247-5258.                                                                           | 0.8 | 122       |
| 78 | Use of Nonobese Diabetic Mice to Understand Human Type 1 Diabetes. Endocrinology and Metabolism<br>Clinics of North America, 2010, 39, 541-561.                                                                | 3.2 | 66        |
| 79 | Role of SREBP-1 in the Development of Parasympathetic Dysfunction in the Hearts of Type 1 Diabetic Akita Mice. Circulation Research, 2009, 105, 287-294.                                                       | 4.5 | 26        |
| 80 | Evaluating Protocols for Embryonic Stem Cell Differentiation into Insulin-Secreting $\hat{I}^2$ -Cells Using Insulin II-GFP as a Specific and Noninvasive Reporter. Cloning and Stem Cells, 2009, 11, 245-257. | 2.6 | 9         |
| 81 | Immune Depletion With Cellular Mobilization Imparts Immunoregulation and Reverses Autoimmune<br>Diabetes in Nonobese Diabetic Mice. Diabetes, 2009, 58, 2277-2284.                                             | 0.6 | 68        |
| 82 | MerTK regulates thymic selection of autoreactive T cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4810-4815.                                               | 7.1 | 33        |
| 83 | Chapter 24 Quantification, Localization, and Tissue Specificities of Mouse Mitochondrial Reactive<br>Oxygen Species Production. Methods in Enzymology, 2009, 456, 439-457.                                     | 1.0 | 15        |
| 84 | Role of Increased ROS Dissipation in Prevention of T1D. Annals of the New York Academy of Sciences, 2008, 1150, 157-166.                                                                                       | 3.8 | 39        |
| 85 | Commonalities of genetic resistance to spontaneous autoimmune and free radical-mediated diabetes.<br>Free Radical Biology and Medicine, 2008, 45, 1263-1270.                                                   | 2.9 | 18        |
| 86 | MerTK is required for apoptotic cell–induced T cell tolerance. Journal of Experimental Medicine, 2008, 205, 219-232.                                                                                           | 8.5 | 127       |
| 87 | mt-Nd2 Suppresses Reactive Oxygen Species Production by Mitochondrial Complexes I and III. Journal of<br>Biological Chemistry, 2008, 283, 10690-10697.                                                         | 3.4 | 47        |
| 88 | Nuclear and Mitochondrial Interaction Involving mt-Nd2 Leads to Increased Mitochondrial Reactive<br>Oxygen Species Production*. Journal of Biological Chemistry, 2007, 282, 5171-5179.                         | 3.4 | 57        |
| 89 | Apoptotic cells induce Mer tyrosine kinase–dependent blockade of NF-κB activation in dendritic cells.<br>Blood, 2007, 109, 653-660.                                                                            | 1.4 | 187       |
| 90 | HLA-A*0201-Restricted T Cells from Humanized NOD Mice Recognize Autoantigens of Potential Clinical<br>Relevance to Type 1 Diabetes. Journal of Immunology, 2006, 176, 3257-3265.                               | 0.8 | 114       |

| #   | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Modulatory Role of DR4- to DQ8-restricted CD4 T-Cell Responses and Type 1 Diabetes Susceptibility.<br>Diabetes, 2006, 55, 3455-3462.                                                                                       | 0.6 | 14        |
| 92  | Utility of murine models for the study of spontaneous autoimmune type 1 diabetes. Pediatric Diabetes, 2005, 6, 165-177.                                                                                                    | 2.9 | 37        |
| 93  | Major Histocompatibility Complex-Linked Diabetes Susceptibility in NOD/Lt Mice: Subcongenic Analysis<br>Localizes a Component of Idd16 at the H2-D End of the Diabetogenic H2g7 Complex. Diabetes, 2005, 54,<br>1603-1606. | 0.6 | 33        |
| 94  | Proteasome Inhibition Alters Glucose-stimulated (Pro)insulin Secretion and Turnover in Pancreatic<br>β-Cells. Journal of Biological Chemistry, 2005, 280, 15727-15734.                                                     | 3.4 | 64        |
| 95  | Mechanisms Underlying Resistance of Pancreatic Islets from ALR/Lt Mice to Cytokine-Induced<br>Destruction. Journal of Immunology, 2005, 175, 1248-1256.                                                                    | 0.8 | 51        |
| 96  | ALS/Lt: A New Type 2 Diabetes Mouse Model Associated With Low Free Radical Scavenging Potential.<br>Diabetes, 2004, 53, S125-S129.                                                                                         | 0.6 | 20        |
| 97  | Generation, Maintenance, and Adoptive Transfer of Diabetogenic T-Cell Lines/Clones From the<br>Nonobese Diabetic Mouse. , 2004, 102, 213-226.                                                                              |     | 3         |
| 98  | Genetic analysis of resistance to Type-1 Diabetes in ALR/Lt mice, a NOD-related strain with defenses against autoimmune-mediated diabetogenic stress. Immunogenetics, 2003, 55, 491-496.                                   | 2.4 | 38        |
| 99  | New mouse model to study islet transplantation in insulin-dependent diabetes mellitus.<br>Transplantation, 2002, 73, 1333-1336.                                                                                            | 1.0 | 75        |
| 100 | Genetic control of neutrophil superoxide production in diabetes-resistant ALR/Lt mice. Free Radical Biology and Medicine, 2002, 32, 744-751.                                                                               | 2.9 | 27        |
| 101 | Rodent models for the study of type 2 diabetes in children (juvenile diabesity). Pediatric Diabetes, 2002, 3, 163-173.                                                                                                     | 2.9 | 3         |
| 102 | Role of vitamin A in mitochondrial gene expression. Diabetes Research and Clinical Practice, 2001, 54, S11-S27.                                                                                                            | 2.8 | 43        |
| 103 | Attenuation of circadian rhythms of food intake and respiration in aging diabetes-prone BHE/Cdb rats.<br>American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2000, 279,<br>R230-R238.      | 1.8 | 6         |
| 104 | MHC characterization of ALR and ALS mice: respective similarities to the NOD and NON strains.<br>Immunogenetics, 1999, 49, 722-726.                                                                                        | 2.4 | 15        |
| 105 | Constitutive differences in antioxidant defense status distinguish alloxan-resistant and alloxan-susceptible mice. Free Radical Biology and Medicine, 1999, 27, 449-455.                                                   | 2.9 | 66        |
| 106 | Noninsulin-Dependent Diabetes Mellitus as a Mitochondrial Genomic Disease. Experimental Biology<br>and Medicine, 1998, 219, 97-108.                                                                                        | 2.4 | 32        |
| 107 | A point mutation in the mitochondrial DNA of diabetes-prone BHE/cdb rats FASEB Journal, 1995, 9, 1638-1642.                                                                                                                | 0.5 | 35        |