John C Burnett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6614963/publications.pdf

Version: 2024-02-01

41 papers 3,316 citations

257450 24 h-index 35 g-index

45 all docs

45 docs citations

45 times ranked

5167 citing authors

#	Article	IF	CITATIONS
1	Novel Humanized Peripheral Blood Mononuclear Cell Mouse Model with Delayed Onset of Graft-versus-Host Disease for Preclinical HIV Research. Journal of Virology, 2022, 96, JVI0139421.	3.4	11
2	CRISPR-Cas9-mediated gene disruption of HIV-1 co-receptors confers broad resistance to infection in human T cells and humanized mice. Molecular Therapy - Methods and Clinical Development, 2022, 24, 321-331.	4.1	11
3	Pre-clinical data supporting immunotherapy for HIV using CMV-HIV-specific CAR TÂcells with CMV vaccine. Molecular Therapy - Methods and Clinical Development, 2022, 25, 344-359.	4.1	6
4	Arsenic Trioxide and Venetoclax Synergize against AML Progenitors by ROS Induction and Inhibition of Nrf2 Activation. International Journal of Molecular Sciences, 2022, 23, 6568.	4.1	9
5	CRED9: a differentially expressed elncRNA regulates expression of transcription factor CEBPA. Rna, 2021, 27, 891-906.	3.5	5
6	Exosome-mediated stable epigenetic repression of HIV-1. Nature Communications, 2021, 12, 5541.	12.8	41
7	Identification of a therapeutic interfering particle $\hat{a} \in \text{``A single-dose SARS-CoV-2}$ antiviral intervention with a high barrier to resistance. Cell, 2021, 184, 6022-6036.e18.	28.9	36
8	HIV Replication and Latency in a Humanized NSG Mouse Model during Suppressive Oral Combinational Antiretroviral Therapy. Journal of Virology, 2018, 92, .	3.4	36
9	Biomolecular Therapeutics for HIV. , 2018, , 541-567.		2
10	Nucleolar Localization of HIV-1 Rev Is Required, Yet Insufficient for Production of Infectious Viral Particles. AIDS Research and Human Retroviruses, 2018, 34, 961-981.	1.1	7
11	Improvements and Limitations of Humanized Mouse Models for HIV Research: NIH/NIAID "Meet the Experts―2015 Workshop Summary. AIDS Research and Human Retroviruses, 2016, 32, 109-119.	1.1	57
12	AptaTRACE Elucidates RNA Sequence-Structure Motifs from Selection Trends in HT-SELEX Experiments. Cell Systems, 2016, 3, 62-70.	6.2	55
13	High throughput sequencing analysis of RNA libraries reveals the influences of initial library and PCR methods on SELEX efficiency. Scientific Reports, 2016, 6, 33697.	3.3	66
14	Potent and Targeted Activation of Latent HIV-1 Using the CRISPR/dCas9 Activator Complex. Molecular Therapy, 2016, 24, 488-498.	8.2	109
15	LGIT In Vitro Latency Model in Primary and T Cell Lines to Test HIV-1 Reactivation Compounds. Methods in Molecular Biology, 2016, 1354, 255-264.	0.9	O
16	580. In Vivo Analyses of Aptamers and siRNA Therapeutics Against HIV-1 in Humanized Mouse Model. Molecular Therapy, 2015, 23, S231.	8.2	0
17	692. A Novel RNAi Trigger Design Retains Potent, Target Specific Activity Despite Emerging Mutations in the Target Site. Molecular Therapy, 2015, 23, S276.	8.2	O
18	693. Potent and Targeted Activation of Latent HIV-1 Using Multiplexed Guide RNAs and the CRISPR/dCas9 Activator Complex. Molecular Therapy, 2015, 23, S276.	8.2	5

#	Article	IF	CITATIONS
19	581. Exploring Potency of Small RNAs for HIV Latency Reactivation. Molecular Therapy, 2015, 23, S231.	8.2	O
20	Progress toward curing HIV infection with hematopoietic cell transplantation. Stem Cells and Cloning: Advances and Applications, 2015, 8, 109.	2.3	8
21	RNA interference approaches for treatment of HIV-1 infection. Genome Medicine, 2015, 7, 50.	8.2	69
22	Cell-Specific RNA Aptamer against Human CCR5 Specifically Targets HIV-1 Susceptible Cells and Inhibits HIV-1 Infectivity. Chemistry and Biology, 2015, 22, 379-390.	6.0	71
23	Aptamer–siRNA Chimeras for HIV. Advances in Experimental Medicine and Biology, 2015, 848, 211-234.	1.6	28
24	RNA Interference-Based Gene Therapy Strategies for the Treatment of HIV Infection., 2015, , 1033-1044.		0
25	The role of antisense long noncoding RNA in small RNA-triggered gene activation. Rna, 2014, 20, 1916-1928.	3.5	46
26	Irradiated compared with nonirradiated NSG mice for the development of a human B-cell lymphoma model. Comparative Medicine, 2014, 64, 179-85.	1.0	2
27	Regulation of host gene expression by HIV-1 TAR microRNAs. Retrovirology, 2013, 10, 86.	2.0	45
28	Dual functional BAFF receptor aptamers inhibit ligand-induced proliferation and deliver siRNAs to NHL cells. Nucleic Acids Research, 2013, 41, 4266-4283.	14.5	73
29	Molecular basis for improved gene silencing by Dicer substrate interfering RNA compared with other siRNA variants. Nucleic Acids Research, 2013, 41, 6209-6221.	14.5	59
30	Nanoparticle-Based Delivery of RNAi Therapeutics: Progress and Challenges. Pharmaceuticals, 2013, 6, 85-107.	3.8	171
31	Mutual Information Analysis Reveals Coevolving Residues in Tat That Compensate for Two Distinct Functions in HIV-1 Gene Expression. Journal of Biological Chemistry, 2012, 287, 7945-7955.	3.4	10
32	Creating genetic resistance to HIV. Current Opinion in Immunology, 2012, 24, 625-632.	5.5	39
33	Current Progress of RNA Aptamer-Based Therapeutics. Frontiers in Genetics, 2012, 3, 234.	2.3	111
34	RNA-Based Therapeutics: Current Progress and Future Prospects. Chemistry and Biology, 2012, 19, 60-71.	6.0	804
35	Current progress of siRNA/shRNA therapeutics in clinical trials. Biotechnology Journal, 2011, 6, 1130-1146.	3.5	380
36	Combinatorial Latency Reactivation for HIV-1 Subtypes and Variants. Journal of Virology, 2010, 84, 5958-5974.	3.4	97

JOHN C BURNETT

#	Article	IF	CITATIONS
37	HIV Promoter Integration Site Primarily Modulates Transcriptional Burst Size Rather Than Frequency. PLoS Computational Biology, 2010, 6, e1000952.	3.2	95
38	Control of Stochastic Gene Expression by Host Factors at the HIV Promoter. PLoS Pathogens, 2009, 5, e1000260.	4.7	98
39	Stem cells, ribozymes and HIV. Gene Therapy, 2009, 16, 1178-1179.	4.5	10
40	HIV Evades RNA Interference Directed at TAR by an Indirect Compensatory Mechanism. Cell Host and Microbe, 2008, 4, 484-494.	11.0	44
41	Stochastic Gene Expression in a Lentiviral Positive-Feedback Loop: HIV-1 Tat Fluctuations Drive Phenotypic Diversity. Cell, 2005, 122, 169-182.	28.9	599