
Pragnesh N Dave

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6614769/publications.pdf Version: 2024-02-01

PRACHESH N DAVE

#	Article	IF	CITATIONS
1	A review on nano-TiO2 sol–gel type syntheses and its applications. Journal of Materials Science, 2011, 46, 3669-3686.	1.7	658
2	Applications of nano-catalyst in new era. Journal of Saudi Chemical Society, 2012, 16, 307-325.	2.4	406
3	A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate. Journal of Saudi Chemical Society, 2013, 17, 135-149.	2.4	205
4	Review on Thermal Decomposition of Ammonium Nitrate. Journal of Energetic Materials, 2013, 31, 1-26.	1.0	189
5	Solid propellants: AP/HTPB composite propellants. Arabian Journal of Chemistry, 2019, 12, 2061-2068.	2.3	172
6	Bovine Serum Albumin Bioconjugated Gold Nanoparticles: Synthesis, Hemolysis, and Cytotoxicity toward Cancer Cell Lines. Journal of Physical Chemistry C, 2012, 116, 8834-8843.	1.5	168
7	Removal of iron for safe drinking water. Desalination, 2012, 303, 1-11.	4.0	155
8	Nano-metal oxide: potential catalyst on thermal decomposition of ammonium perchlorate. Journal of Experimental Nanoscience, 2012, 7, 205-231.	1.3	100
9	Natural Polysaccharide-Based Hydrogels and Nanomaterials. , 2018, , 36-66.		52
10	The catalytic activity of transition metal oxide nanoparticles on thermal decomposition of ammonium perchlorate. Defence Technology, 2019, 15, 629-635.	2.1	51
11	Recent Advances in Homogeneous and Heterogeneous Catalyst in Biginelli Reaction from 2015â€19: A Concise Review. ChemistrySelect, 2020, 5, 5552-5572.	0.7	47
12	Micelles, mixed micelles, and applications of polyoxypropylene (PPO)-polyoxyethylene (PEO)-polyoxypropylene (PPO) triblock polymers. International Journal of Industrial Chemistry, 2013, 4, 1.	3.1	40
13	pH and thermo-responsive tetronic micelles for the synthesis of gold nanoparticles: effect of physiochemical aspects of tetronics. Physical Chemistry Chemical Physics, 2014, 16, 4728.	1.3	37
14	3-Nitro-1,2,4-triazol-5-one (NTO): High Explosive Insensitive Energetic Material. Chemistry of Heterocyclic Compounds, 2021, 57, 720-730.	0.6	35
15	DNA-damaging agents stimulate the formation of directed reciprocal translocations in Saccharomyces cerevisiae. Mutation Research DNA Repair, 1994, 314, 121-133.	3.8	32
16	Mating type regulates the radiation-associated stimulation of reciprocal translocation events in Saccharomyces cerevisiae. Molecular Genetics and Genomics, 1994, 243, 63-70.	2.4	31
17	Design process for nanomaterials. Journal of Materials Science, 2013, 48, 3605-3622.	1.7	31
18	12â€Tungstosilicic Acid H ₄ [W ₁₂ SiO ₄₀] Over Natural Bentonite as a Heterogeneous Catalyst for the Synthesis of 3,4â€dihydropyrimidinâ€2(1H)â€Ones. ChemistrySelect, 2020, 5, 2395-2400.	0.7	31

PRAGNESH N DAVE

#	Article	IF	CITATIONS
19	Tea waste as adsorbent for ionic dyes. Desalination and Water Treatment, 2013, 51, 6552-6561.	1.0	29
20	Expression of Saccharomyces cerevisiae MATa and MATα enhances the HO endonuclease-stimulation of chromosomal rearrangements directed by his3 recombinational substrates. Mutation Research DNA Repair, 1999, 433, 33-44.	3.8	27
21	Development and Validation of a Stability-Indicating HPLC Assay Method for Simultaneous Determination of Spironolactone and Furosemide in Tablet Formulation. Journal of Chromatographic Science, 2012, 50, 721-726.	0.7	25
22	Metal oxide nanoparticles as catalyst for thermal behavior of AN based composite solid propellant. Chemical Physics Letters, 2019, 730, 600-607.	1.2	25
23	Ecofriendly Route To Synthesize Nanomaterials for Biomedical Applications: Bioactive Polymers on Shape-Controlled Effects of Nanomaterials under Different Reaction Conditions. ACS Sustainable Chemistry and Engineering, 2013, 1, 1417-1431.	3.2	23
24	Thermal decomposition of AP/HTPB propellants in presence of Zn nanoalloys. Applied Nanoscience (Switzerland), 2015, 5, 93-98.	1.6	23
25	Heteropoly-12-tungstophosphoric acid H3[PW12O40] over natural bentonite as a heterogeneous catalyst for the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones. Arabian Journal of Chemistry, 2020, 13, 5911-5921.	2.3	20
26	Performance of low pressure nanofiltration membrane in forward osmosis using magnesium chloride as draw solute. Journal of Water Process Engineering, 2020, 33, 101092.	2.6	16
27	Thermal plasma synthesis of nanotitania and its characterization. Journal of Saudi Chemical Society, 2014, 18, 234-244.	2.4	15
28	Nanoferrites: Catalyst for Thermal Decomposition of Ammonium Per Chlorate. Particulate Science and Technology, 2015, 33, 677-681.	1.1	15
29	Glass fiber reinforced composites of phenolic–urea–epoxy resin blends. Journal of Saudi Chemical Society, 2012, 16, 241-246.	2.4	14
30	Transition metal oxide nanoparticles: Potential nano-modifier for rocket propellants. Particulate Science and Technology, 2016, 34, 676-680.	1.1	14
31	The catalytic investigation of nanoferrites on the thermal decomposition behavior of AN-based composite solid propellant. Particulate Science and Technology, 2021, 39, 1-9.	1.1	14
32	Nanomaterials as modifier for composite solid propellants. Nano Structures Nano Objects, 2019, 20, 100372.	1.9	13
33	Investigating Catalytic Properties of Nanoferrites for Both AP and Nano-AP Based Composite Solid Propellant. Combustion Science and Technology, 2021, 193, 2290-2304.	1.2	13
34	Nano-Alloys: Potential Catalyst for Thermal Decomposition of Ammonium Perchlorate. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2014, 44, 258-262.	0.6	12
35	Ionic dye adsorption by zinc oxide nanoparticles. Chemistry and Ecology, 2015, 31, 173-185.	0.6	12
36	Emissions of non-methane volatile organic compounds from a landfill site in a major city of India: impact on local air quality. Heliyon, 2020, 6, e04537.	1.4	12

PRAGNESH N DAVE

#	Article	IF	CITATIONS
37	Adsorptive abatement of ciprofloxacin using NiFe2O4 nanoparticles incorporated into G. ghatti-cl-P(AAm) nanocomposites hydrogel: isotherm, kinetic, and thermodynamic studies. Polymer Bulletin, 2020, 77, 5589-5613.	1.7	11
38	Adsorption Mechanism of Basic Red-12 over Eucalyptus Bark and Its Surface Derivatives. Journal of Chemical & Engineering Data, 2012, 57, 2004-2011.	1.0	10
39	A Review on Application of Multifunctional Mesoporous Nanoparticles in Controlled Release of Drug Delivery. Materials Science Forum, 2014, 781, 17-24.	0.3	10
40	Cobalt copper ferrite: burning rate modifier for composite solid propellants and its catalytic activity on the thermal decomposition of ammonium perchlorate. Research on Chemical Intermediates, 2022, 48, 555-574.	1.3	10
41	Effect of copper ferrite (CuFe ₂ O ₄) in the thermal decomposition of modified nitrotriazolone. Materials Advances, 2022, 3, 5019-5026.	2.6	10
42	NiZnFe2O4: a potential catalyst for the thermal decomposition of AP and burn rate modifier for AP/HTPB based propellants. Journal of Thermal Analysis and Calorimetry, 2022, 147, 10999-11011.	2.0	8
43	Investigation the catalytic profile of Eu and Pr doped CeO2 nanoparticles for the thermal behavior of AP. SN Applied Sciences, 2019, 1, 1.	1.5	6
44	Nano Size NiCuZnFe ₂ O ₄ Tri Metal Spinel Ferrite: Synthesis, Characterizations and Additive for Thermolysis of Ammonium Perchlorate. ChemistrySelect, 2022, 7, .	0.7	6
45	Effect of Nanosize Zinc Ferrite on Thermolysis of Ammonium Perchlorate. Journal of Electronic Materials, 2022, 51, 785-792.	1.0	5
46	Emerging Applications of Nanoscience. Materials Science Forum, 2014, 781, 25-32.	0.3	4
47	NiCoZn Ferrite: burn rate enhancer for AP/HTPB based propellant and its catalytic study on the decomposition of ammonium perchlorate. Journal of Energetic Materials, 2023, 41, 291-318.	1.0	4
48	Cobalt copper zinc ferrite: An efficient catalyst for the thermal decomposition of ammonium perchlorate. Combustion Science and Technology, 2023, 195, 2732-2749.	1.2	4
49	Thermal decomposition and kinetic investigation of AP and AP based composite solid propellant in the presence of nickel ferrite additive. Journal of Materials Research and Technology, 2022, 19, 4183-4196.	2.6	4
50	Fe(III)/Bentonite as a Heterogeneous Catalyst for the Synthesis of 3,4â€dihydropyrimidinâ€2â€(1H)â€ones. ChemistrySelect, 2020, 5, 14161-14167.	0.7	3
51	12-Phosphomolybdic acid H3[PMo12O40] over natural bentonite as a heterogeneous catalyst for the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones. Results in Chemistry, 2021, 3, 100169.	0.9	3
52	TRANSITION METAL NANO-ALLOYS: POTENTIAL CATALYST FOR THERMAL DECOMPOSITION OF AMMONIUM PERCHLORATE. International Journal of Energetic Materials and Chemical Propulsion, 2016, 15, 371-382.	0.2	3
53	Applications of Nanomaterials in Corrosion Protection Inhibitors and Coatings. ACS Symposium Series, 0, , 189-212.	0.5	3
54	Effect of rGO with BaCuO ₃ perovskite on the thermal decomposition of AP and NTO. RSC Advances, 2022, 12, 19101-19107.	1.7	3

PRAGNESH N DAVE

#	Article	IF	CITATIONS
55	Synthesis, properties, and applications of urethane-modified acrylated poly(ester-amide)s. Research on Chemical Intermediates, 2013, 39, 941-949.	1.3	2
56	Studies on novel interacting blends of acrylated poly(ester-amide)s having epoxy residues and vinyl ester of bisphenol-C. Journal of Saudi Chemical Society, 2013, 17, 277-283.	2.4	2
57	Photocatalytic Hydrogen Production. Materials Science Forum, 0, 764, 151-168.	0.3	2
58	Synthesis, characterization of novel interacting blends of acrylated poly(ester-amide)s containing epoxy residues with vinyl ester resin. Journal of Saudi Chemical Society, 2014, 18, 398-403.	2.4	2
59	Synthesis and properties of epoxy resin-based acrylated poly (ester-amide)s/silane tailored organo-montmorillonite nanocomposites. High Performance Polymers, 2012, 24, 793-798.	0.8	1
60	Synthesis, properties and applications of interacting blends of acrylated novalac epoxy resin based poly(ester-amide)s and vinyl ester. Journal of Saudi Chemical Society, 2016, 20, S231-S235.	2.4	1
61	Effect of the Nanomaterials on the Thermolysis of HMX: a Short Review. Reviews and Advances in Chemistry, 2022, 12, 96-106.	0.2	1
62	Studies on novel interpenetrating networks of urethane modified poly(ester-amide) and vinyl ester of bisphenol-C. Journal of Saudi Chemical Society, 2016, 20, 253-258.	2.4	0
63	Augmented catalytic effect of nano biâ€transition metal ferrite NiZnFe ₂ O ₄ for nano nitrotriazolone (NTO) thermolysis. Applied Organometallic Chemistry, 0, , .	1.7	Ο